
The Little
Book of

OAuth 2.0 RFCs

Aaron Parecki

The Little Book ofThe Little Book of
OAuth 2.0 RFCsOAuth 2.0 RFCs

Aaron Parecki

The Little Book of OAuth 2.0 RFCs

Compiled by Aaron Parecki

Copyright © 2022 Aaron Parecki

RFC Text Copyright © 2012-2022 IETF Trust

OAuth Logo by Chris Messina

While every precaution has been taken in the preparation of this book,
the publisher and the author assume no responsibility for errors or
omissions, or for damages resulting from the use of the information
contained herein.

ISBN: 979-8-607-50395-6

22335.1516

Second Edition

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

° ° ° ° °

Table of Contents

IntroductionIntroduction .. vv

RFC 6749: The ORFC 6749: The OAAuth 2.0 Auth 2.0 Authorization Fruthorization Frameworkamework................................ 77

RFC 6750: ORFC 6750: OAAuth 2.0 Bearer Tuth 2.0 Bearer Tokokensens .. 8787

RFC 7636: Proof KRFC 7636: Proof Key for Code Exchange (PKey for Code Exchange (PKCE)CE) 109109

RFC 6819: ORFC 6819: OAAuth 2.0 Threat Model and Securityuth 2.0 Threat Model and Security
ConsiderConsiderationsations.. 133133

RFC 8252: ORFC 8252: OAAuth 2.0 for Native and Mobile Appsuth 2.0 for Native and Mobile Apps.................................. 207207

DrDraft: Oaft: OAAuth 2.0 for Browser-Based Appsuth 2.0 for Browser-Based Apps.. 231231

DrDraft: Oaft: OAAuth 2.0 Security Best Current Pruth 2.0 Security Best Current Practiceactice 263263

RFC 8628: ORFC 8628: OAAuth 2.0 Device Auth 2.0 Device Authorization Gruthorization Grantant.................................. 321321

RFC 7009: ORFC 7009: OAAuth 2.0 Tuth 2.0 Tokoken Revocationen Revocation.. 345345

RFC 7662: ORFC 7662: OAAuth 2.0 Tuth 2.0 Tokoken Introspectionen Introspection.. 359359

RFC 8414: ORFC 8414: OAAuth 2.0 Auth 2.0 Authorization Server Metadatauthorization Server Metadata.................. 379379

Appendix:Appendix: AAdvanced Extensionsdvanced Extensions.. 405405

Appendix:Appendix: Related CommunitiesRelated Communities.. 407407

Appendix:Appendix: AAcknowledgmentscknowledgments.. 409409

The Little Book of OAuth 2.0 RFCs iii

iv The Little Book of OAuth 2.0 RFCs

° ° ° ° °

Introduction

It's often a challenge to understand the entire OAuth
landscape and how all the different RFCs fit together.
OAuth is made up of many small building blocks, from the
first RFC published in 2012 to many additional RFCs
following it. The later additions to the spec often either fill
in the underspecified parts of the first RFC, or cover
additional use cases such as mobile phones or smart TVs
that weren't originally addressed in the first RFC.

This book is a collection of the most critical RFCs you'll
need to understand when building an OAuth client or
server. They are ordered not sequentially, but instead in
order of logical progression, each building on the last to
provide new and better functionality as a whole.

Each chapter has a short introduction describing where
this RFC fits within the stack and how it relates to the
others that came before it. These RFCs are reproduced in
their entirety, including parts that may have been
obsoleted by later specifications.

v

vi

Chapter 1

RFC 6749: The OAuth 2.0
Authorization Framework

RFC 6749 is the core OAuth 2.0 framework. This RFC
describes various roles in OAuth, several different
authorization flows, and provides some extension points
to build upon. There are many aspects left unspecified
that you'll need to decide when building a complete
implementation. Many of these details have been
documented as extension specs.

This spec defines ways applications can get an access
token, but doesn't define how applications use access
tokens or what format access tokens should be. The next
RFC, RFC 6750, defines "Bearer Tokens" which have
become the most common access token type in practice.

In the time since RFC 6749 has been published, much of
the web and mobile landscape has changed, and some of
the assumptions made no longer apply. The spec used to
recommend the Implicit flow for both mobile and
JavaScript apps, but since then, the PKCE extension
improves security in both platforms and is now the
recommended flow instead. The Password grant was
included mostly as a compromise for migrating legacy
systems to the OAuth framework, but is not a good option
for new applications, and is prohibited in the latest
version of the Security Best Current Practice.

RFC 6749: The OAuth 2.0 Authorization Framework 7

8 RFC 6749: The OAuth 2.0 Authorization Framework

Internet Engineering Task Force (IETF) D. Hardt, Ed.
Request for Comments: 6749 Microsoft
Obsoletes: 5849 October 2012
Category: Standards Track
ISSN: 2070-1721

The OAuth 2.0 Authorization Framework

Abstract

The OAuth 2.0 authorization framework enables a third-party
application to obtain limited access to an HTTP service, either on
behalf of a resource owner by orchestrating an approval interaction
between the resource owner and the HTTP service, or by allowing the
third-party application to obtain access on its own behalf. This
specification replaces and obsoletes the OAuth 1.0 protocol described
in RFC 5849.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.

Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc6749.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Hardt Standards Track [Page 1]

RFC 6749: The OAuth 2.0 Authorization Framework 9

RFC 6749 OAuth 2.0 October 2012

Table of Contents

1. Introduction ..4
1.1. Roles ..6
1.2. Protocol Flow ..7
1.3. Authorization Grant ..8

1.3.1. Authorization Code8
1.3.2. Implicit ..8
1.3.3. Resource Owner Password Credentials9
1.3.4. Client Credentials9

1.4. Access Token ..10
1.5. Refresh Token ...10
1.6. TLS Version ...12
1.7. HTTP Redirections ...12
1.8. Interoperability ..12
1.9. Notational Conventions13

2. Client Registration ..13
2.1. Client Types ..14
2.2. Client Identifier ...15
2.3. Client Authentication16

2.3.1. Client Password16
2.3.2. Other Authentication Methods17

2.4. Unregistered Clients17
3. Protocol Endpoints ...18

3.1. Authorization Endpoint18
3.1.1. Response Type19
3.1.2. Redirection Endpoint19

3.2. Token Endpoint ..21
3.2.1. Client Authentication22

3.3. Access Token Scope ..23
4. Obtaining Authorization ..23

4.1. Authorization Code Grant24
4.1.1. Authorization Request25
4.1.2. Authorization Response26
4.1.3. Access Token Request29
4.1.4. Access Token Response30

4.2. Implicit Grant ..31
4.2.1. Authorization Request33
4.2.2. Access Token Response35

4.3. Resource Owner Password Credentials Grant37
4.3.1. Authorization Request and Response39
4.3.2. Access Token Request39
4.3.3. Access Token Response40

4.4. Client Credentials Grant40
4.4.1. Authorization Request and Response41
4.4.2. Access Token Request41
4.4.3. Access Token Response42

4.5. Extension Grants ..42

Hardt Standards Track [Page 2]

10 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

5. Issuing an Access Token ..43
5.1. Successful Response43
5.2. Error Response ..45

6. Refreshing an Access Token47
7. Accessing Protected Resources48

7.1. Access Token Types ..49
7.2. Error Response ..49

8. Extensibility ..50
8.1. Defining Access Token Types50
8.2. Defining New Endpoint Parameters50
8.3. Defining New Authorization Grant Types51
8.4. Defining New Authorization Endpoint Response Types51
8.5. Defining Additional Error Codes51

9. Native Applications ..52
10. Security Considerations53

10.1. Client Authentication53
10.2. Client Impersonation54
10.3. Access Tokens ..55
10.4. Refresh Tokens ...55
10.5. Authorization Codes56
10.6. Authorization Code Redirection URI Manipulation56
10.7. Resource Owner Password Credentials57
10.8. Request Confidentiality58
10.9. Ensuring Endpoint Authenticity58
10.10. Credentials-Guessing Attacks58
10.11. Phishing Attacks ..58
10.12. Cross-Site Request Forgery59
10.13. Clickjacking ..60
10.14. Code Injection and Input Validation60
10.15. Open Redirectors ..60
10.16. Misuse of Access Token to Impersonate Resource

Owner in Implicit Flow61
11. IANA Considerations ...62

11.1. OAuth Access Token Types Registry62
11.1.1. Registration Template62

11.2. OAuth Parameters Registry63
11.2.1. Registration Template63
11.2.2. Initial Registry Contents64

11.3. OAuth Authorization Endpoint Response Types Registry66
11.3.1. Registration Template66
11.3.2. Initial Registry Contents67

11.4. OAuth Extensions Error Registry67
11.4.1. Registration Template68

12. References ..68
12.1. Normative References68
12.2. Informative References70

Hardt Standards Track [Page 3]

RFC 6749: The OAuth 2.0 Authorization Framework 11

RFC 6749 OAuth 2.0 October 2012

Appendix A. Augmented Backus-Naur Form (ABNF) Syntax71
A.1. "client_id" Syntax ..71
A.2. "client_secret" Syntax71
A.3. "response_type" Syntax71
A.4. "scope" Syntax ..72
A.5. "state" Syntax ..72
A.6. "redirect_uri" Syntax72
A.7. "error" Syntax ..72
A.8. "error_description" Syntax72
A.9. "error_uri" Syntax ..72
A.10. "grant_type" Syntax73
A.11. "code" Syntax ...73
A.12. "access_token" Syntax73
A.13. "token_type" Syntax73
A.14. "expires_in" Syntax73
A.15. "username" Syntax ...73
A.16. "password" Syntax ...73
A.17. "refresh_token" Syntax74
A.18. Endpoint Parameter Syntax74

Appendix B. Use of application/x-www-form-urlencoded Media Type ...74
Appendix C. Acknowledgements75

1. Introduction

In the traditional client-server authentication model, the client
requests an access-restricted resource (protected resource) on the
server by authenticating with the server using the resource owner's
credentials. In order to provide third-party applications access to
restricted resources, the resource owner shares its credentials with
the third party. This creates several problems and limitations:

o Third-party applications are required to store the resource
owner's credentials for future use, typically a password in
clear-text.

o Servers are required to support password authentication, despite
the security weaknesses inherent in passwords.

o Third-party applications gain overly broad access to the resource
owner's protected resources, leaving resource owners without any
ability to restrict duration or access to a limited subset of
resources.

o Resource owners cannot revoke access to an individual third party
without revoking access to all third parties, and must do so by
changing the third party's password.

Hardt Standards Track [Page 4]

12 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

o Compromise of any third-party application results in compromise of
the end-user's password and all of the data protected by that
password.

OAuth addresses these issues by introducing an authorization layer
and separating the role of the client from that of the resource
owner. In OAuth, the client requests access to resources controlled
by the resource owner and hosted by the resource server, and is
issued a different set of credentials than those of the resource
owner.

Instead of using the resource owner's credentials to access protected
resources, the client obtains an access token -- a string denoting a
specific scope, lifetime, and other access attributes. Access tokens
are issued to third-party clients by an authorization server with the
approval of the resource owner. The client uses the access token to
access the protected resources hosted by the resource server.

For example, an end-user (resource owner) can grant a printing
service (client) access to her protected photos stored at a photo-
sharing service (resource server), without sharing her username and
password with the printing service. Instead, she authenticates
directly with a server trusted by the photo-sharing service
(authorization server), which issues the printing service delegation-
specific credentials (access token).

This specification is designed for use with HTTP ([RFC2616]). The
use of OAuth over any protocol other than HTTP is out of scope.

The OAuth 1.0 protocol ([RFC5849]), published as an informational
document, was the result of a small ad hoc community effort. This
Standards Track specification builds on the OAuth 1.0 deployment
experience, as well as additional use cases and extensibility
requirements gathered from the wider IETF community. The OAuth 2.0
protocol is not backward compatible with OAuth 1.0. The two versions
may co-exist on the network, and implementations may choose to
support both. However, it is the intention of this specification
that new implementations support OAuth 2.0 as specified in this
document and that OAuth 1.0 is used only to support existing
deployments. The OAuth 2.0 protocol shares very few implementation
details with the OAuth 1.0 protocol. Implementers familiar with
OAuth 1.0 should approach this document without any assumptions as to
its structure and details.

Hardt Standards Track [Page 5]

RFC 6749: The OAuth 2.0 Authorization Framework 13

RFC 6749 OAuth 2.0 October 2012

1.1. Roles

OAuth defines four roles:

resource owner
An entity capable of granting access to a protected resource.
When the resource owner is a person, it is referred to as an
end-user.

resource server
The server hosting the protected resources, capable of accepting
and responding to protected resource requests using access tokens.

client
An application making protected resource requests on behalf of the
resource owner and with its authorization. The term "client" does
not imply any particular implementation characteristics (e.g.,
whether the application executes on a server, a desktop, or other
devices).

authorization server
The server issuing access tokens to the client after successfully
authenticating the resource owner and obtaining authorization.

The interaction between the authorization server and resource server
is beyond the scope of this specification. The authorization server
may be the same server as the resource server or a separate entity.
A single authorization server may issue access tokens accepted by
multiple resource servers.

Hardt Standards Track [Page 6]

14 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

1.2. Protocol Flow

+--------+ +---------------+
	--(A)- Authorization Request ->	Resource
		Owner
	<-(B)-- Authorization Grant ---	
	+---------------+	
	+---------------+	
	--(C)-- Authorization Grant -->	Authorization
Client		Server
	<-(D)----- Access Token -------	
	+---------------+	
	+---------------+	
	--(E)----- Access Token ------>	Resource
		Server
	<-(F)--- Protected Resource ---	
+--------+ +---------------+

Figure 1: Abstract Protocol Flow

The abstract OAuth 2.0 flow illustrated in Figure 1 describes the
interaction between the four roles and includes the following steps:

(A) The client requests authorization from the resource owner. The
authorization request can be made directly to the resource owner
(as shown), or preferably indirectly via the authorization
server as an intermediary.

(B) The client receives an authorization grant, which is a
credential representing the resource owner's authorization,
expressed using one of four grant types defined in this
specification or using an extension grant type. The
authorization grant type depends on the method used by the
client to request authorization and the types supported by the
authorization server.

(C) The client requests an access token by authenticating with the
authorization server and presenting the authorization grant.

(D) The authorization server authenticates the client and validates
the authorization grant, and if valid, issues an access token.

Hardt Standards Track [Page 7]

RFC 6749: The OAuth 2.0 Authorization Framework 15

RFC 6749 OAuth 2.0 October 2012

(E) The client requests the protected resource from the resource
server and authenticates by presenting the access token.

(F) The resource server validates the access token, and if valid,
serves the request.

The preferred method for the client to obtain an authorization grant
from the resource owner (depicted in steps (A) and (B)) is to use the
authorization server as an intermediary, which is illustrated in
Figure 3 in Section 4.1.

1.3. Authorization Grant

An authorization grant is a credential representing the resource
owner's authorization (to access its protected resources) used by the
client to obtain an access token. This specification defines four
grant types -- authorization code, implicit, resource owner password
credentials, and client credentials -- as well as an extensibility
mechanism for defining additional types.

1.3.1. Authorization Code

The authorization code is obtained by using an authorization server
as an intermediary between the client and resource owner. Instead of
requesting authorization directly from the resource owner, the client
directs the resource owner to an authorization server (via its
user-agent as defined in [RFC2616]), which in turn directs the
resource owner back to the client with the authorization code.

Before directing the resource owner back to the client with the
authorization code, the authorization server authenticates the
resource owner and obtains authorization. Because the resource owner
only authenticates with the authorization server, the resource
owner's credentials are never shared with the client.

The authorization code provides a few important security benefits,
such as the ability to authenticate the client, as well as the
transmission of the access token directly to the client without
passing it through the resource owner's user-agent and potentially
exposing it to others, including the resource owner.

1.3.2. Implicit

The implicit grant is a simplified authorization code flow optimized
for clients implemented in a browser using a scripting language such
as JavaScript. In the implicit flow, instead of issuing the client
an authorization code, the client is issued an access token directly

Hardt Standards Track [Page 8]

16 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

(as the result of the resource owner authorization). The grant type
is implicit, as no intermediate credentials (such as an authorization
code) are issued (and later used to obtain an access token).

When issuing an access token during the implicit grant flow, the
authorization server does not authenticate the client. In some
cases, the client identity can be verified via the redirection URI
used to deliver the access token to the client. The access token may
be exposed to the resource owner or other applications with access to
the resource owner's user-agent.

Implicit grants improve the responsiveness and efficiency of some
clients (such as a client implemented as an in-browser application),
since it reduces the number of round trips required to obtain an
access token. However, this convenience should be weighed against
the security implications of using implicit grants, such as those
described in Sections 10.3 and 10.16, especially when the
authorization code grant type is available.

1.3.3. Resource Owner Password Credentials

The resource owner password credentials (i.e., username and password)
can be used directly as an authorization grant to obtain an access
token. The credentials should only be used when there is a high
degree of trust between the resource owner and the client (e.g., the
client is part of the device operating system or a highly privileged
application), and when other authorization grant types are not
available (such as an authorization code).

Even though this grant type requires direct client access to the
resource owner credentials, the resource owner credentials are used
for a single request and are exchanged for an access token. This
grant type can eliminate the need for the client to store the
resource owner credentials for future use, by exchanging the
credentials with a long-lived access token or refresh token.

1.3.4. Client Credentials

The client credentials (or other forms of client authentication) can
be used as an authorization grant when the authorization scope is
limited to the protected resources under the control of the client,
or to protected resources previously arranged with the authorization
server. Client credentials are used as an authorization grant
typically when the client is acting on its own behalf (the client is
also the resource owner) or is requesting access to protected
resources based on an authorization previously arranged with the
authorization server.

Hardt Standards Track [Page 9]

RFC 6749: The OAuth 2.0 Authorization Framework 17

RFC 6749 OAuth 2.0 October 2012

1.4. Access Token

Access tokens are credentials used to access protected resources. An
access token is a string representing an authorization issued to the
client. The string is usually opaque to the client. Tokens
represent specific scopes and durations of access, granted by the
resource owner, and enforced by the resource server and authorization
server.

The token may denote an identifier used to retrieve the authorization
information or may self-contain the authorization information in a
verifiable manner (i.e., a token string consisting of some data and a
signature). Additional authentication credentials, which are beyond
the scope of this specification, may be required in order for the
client to use a token.

The access token provides an abstraction layer, replacing different
authorization constructs (e.g., username and password) with a single
token understood by the resource server. This abstraction enables
issuing access tokens more restrictive than the authorization grant
used to obtain them, as well as removing the resource server's need
to understand a wide range of authentication methods.

Access tokens can have different formats, structures, and methods of
utilization (e.g., cryptographic properties) based on the resource
server security requirements. Access token attributes and the
methods used to access protected resources are beyond the scope of
this specification and are defined by companion specifications such
as [RFC6750].

1.5. Refresh Token

Refresh tokens are credentials used to obtain access tokens. Refresh
tokens are issued to the client by the authorization server and are
used to obtain a new access token when the current access token
becomes invalid or expires, or to obtain additional access tokens
with identical or narrower scope (access tokens may have a shorter
lifetime and fewer permissions than authorized by the resource
owner). Issuing a refresh token is optional at the discretion of the
authorization server. If the authorization server issues a refresh
token, it is included when issuing an access token (i.e., step (D) in
Figure 1).

A refresh token is a string representing the authorization granted to
the client by the resource owner. The string is usually opaque to
the client. The token denotes an identifier used to retrieve the

Hardt Standards Track [Page 10]

18 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

authorization information. Unlike access tokens, refresh tokens are
intended for use only with authorization servers and are never sent
to resource servers.

+--------+ +---------------+
	--(A)------- Authorization Grant --------->			
	<-(B)----------- Access Token -------------			
	& Refresh Token			
	+----------+			
	--(C)---- Access Token ---->			
	<-(D)- Protected Resource --	Resource		Authorization
Client		Server		Server
	--(E)---- Access Token ---->			
	<-(F)- Invalid Token Error -			
	+----------+			
	--(G)----------- Refresh Token ----------->			
	<-(H)----------- Access Token -------------			
+--------+ & Optional Refresh Token +---------------+

Figure 2: Refreshing an Expired Access Token

The flow illustrated in Figure 2 includes the following steps:

(A) The client requests an access token by authenticating with the
authorization server and presenting an authorization grant.

(B) The authorization server authenticates the client and validates
the authorization grant, and if valid, issues an access token
and a refresh token.

(C) The client makes a protected resource request to the resource
server by presenting the access token.

(D) The resource server validates the access token, and if valid,
serves the request.

(E) Steps (C) and (D) repeat until the access token expires. If the
client knows the access token expired, it skips to step (G);
otherwise, it makes another protected resource request.

(F) Since the access token is invalid, the resource server returns
an invalid token error.

Hardt Standards Track [Page 11]

RFC 6749: The OAuth 2.0 Authorization Framework 19

RFC 6749 OAuth 2.0 October 2012

(G) The client requests a new access token by authenticating with
the authorization server and presenting the refresh token. The
client authentication requirements are based on the client type
and on the authorization server policies.

(H) The authorization server authenticates the client and validates
the refresh token, and if valid, issues a new access token (and,
optionally, a new refresh token).

Steps (C), (D), (E), and (F) are outside the scope of this
specification, as described in Section 7.

1.6. TLS Version

Whenever Transport Layer Security (TLS) is used by this
specification, the appropriate version (or versions) of TLS will vary
over time, based on the widespread deployment and known security
vulnerabilities. At the time of this writing, TLS version 1.2
[RFC5246] is the most recent version, but has a very limited
deployment base and might not be readily available for
implementation. TLS version 1.0 [RFC2246] is the most widely
deployed version and will provide the broadest interoperability.

Implementations MAY also support additional transport-layer security
mechanisms that meet their security requirements.

1.7. HTTP Redirections

This specification makes extensive use of HTTP redirections, in which
the client or the authorization server directs the resource owner's
user-agent to another destination. While the examples in this
specification show the use of the HTTP 302 status code, any other
method available via the user-agent to accomplish this redirection is
allowed and is considered to be an implementation detail.

1.8. Interoperability

OAuth 2.0 provides a rich authorization framework with well-defined
security properties. However, as a rich and highly extensible
framework with many optional components, on its own, this
specification is likely to produce a wide range of non-interoperable
implementations.

In addition, this specification leaves a few required components
partially or fully undefined (e.g., client registration,
authorization server capabilities, endpoint discovery). Without

Hardt Standards Track [Page 12]

20 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

these components, clients must be manually and specifically
configured against a specific authorization server and resource
server in order to interoperate.

This framework was designed with the clear expectation that future
work will define prescriptive profiles and extensions necessary to
achieve full web-scale interoperability.

1.9. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
specification are to be interpreted as described in [RFC2119].

This specification uses the Augmented Backus-Naur Form (ABNF)
notation of [RFC5234]. Additionally, the rule URI-reference is
included from "Uniform Resource Identifier (URI): Generic Syntax"
[RFC3986].

Certain security-related terms are to be understood in the sense
defined in [RFC4949]. These terms include, but are not limited to,
"attack", "authentication", "authorization", "certificate",
"confidentiality", "credential", "encryption", "identity", "sign",
"signature", "trust", "validate", and "verify".

Unless otherwise noted, all the protocol parameter names and values
are case sensitive.

2. Client Registration

Before initiating the protocol, the client registers with the
authorization server. The means through which the client registers
with the authorization server are beyond the scope of this
specification but typically involve end-user interaction with an HTML
registration form.

Client registration does not require a direct interaction between the
client and the authorization server. When supported by the
authorization server, registration can rely on other means for
establishing trust and obtaining the required client properties
(e.g., redirection URI, client type). For example, registration can
be accomplished using a self-issued or third-party-issued assertion,
or by the authorization server performing client discovery using a
trusted channel.

Hardt Standards Track [Page 13]

RFC 6749: The OAuth 2.0 Authorization Framework 21

RFC 6749 OAuth 2.0 October 2012

When registering a client, the client developer SHALL:

o specify the client type as described in Section 2.1,

o provide its client redirection URIs as described in Section 3.1.2,
and

o include any other information required by the authorization server
(e.g., application name, website, description, logo image, the
acceptance of legal terms).

2.1. Client Types

OAuth defines two client types, based on their ability to
authenticate securely with the authorization server (i.e., ability to
maintain the confidentiality of their client credentials):

confidential
Clients capable of maintaining the confidentiality of their
credentials (e.g., client implemented on a secure server with
restricted access to the client credentials), or capable of secure
client authentication using other means.

public
Clients incapable of maintaining the confidentiality of their
credentials (e.g., clients executing on the device used by the
resource owner, such as an installed native application or a web
browser-based application), and incapable of secure client
authentication via any other means.

The client type designation is based on the authorization server's
definition of secure authentication and its acceptable exposure
levels of client credentials. The authorization server SHOULD NOT
make assumptions about the client type.

A client may be implemented as a distributed set of components, each
with a different client type and security context (e.g., a
distributed client with both a confidential server-based component
and a public browser-based component). If the authorization server
does not provide support for such clients or does not provide
guidance with regard to their registration, the client SHOULD
register each component as a separate client.

Hardt Standards Track [Page 14]

22 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

This specification has been designed around the following client
profiles:

web application
A web application is a confidential client running on a web
server. Resource owners access the client via an HTML user
interface rendered in a user-agent on the device used by the
resource owner. The client credentials as well as any access
token issued to the client are stored on the web server and are
not exposed to or accessible by the resource owner.

user-agent-based application
A user-agent-based application is a public client in which the
client code is downloaded from a web server and executes within a
user-agent (e.g., web browser) on the device used by the resource
owner. Protocol data and credentials are easily accessible (and
often visible) to the resource owner. Since such applications
reside within the user-agent, they can make seamless use of the
user-agent capabilities when requesting authorization.

native application
A native application is a public client installed and executed on
the device used by the resource owner. Protocol data and
credentials are accessible to the resource owner. It is assumed
that any client authentication credentials included in the
application can be extracted. On the other hand, dynamically
issued credentials such as access tokens or refresh tokens can
receive an acceptable level of protection. At a minimum, these
credentials are protected from hostile servers with which the
application may interact. On some platforms, these credentials
might be protected from other applications residing on the same
device.

2.2. Client Identifier

The authorization server issues the registered client a client
identifier -- a unique string representing the registration
information provided by the client. The client identifier is not a
secret; it is exposed to the resource owner and MUST NOT be used
alone for client authentication. The client identifier is unique to
the authorization server.

The client identifier string size is left undefined by this
specification. The client should avoid making assumptions about the
identifier size. The authorization server SHOULD document the size
of any identifier it issues.

Hardt Standards Track [Page 15]

RFC 6749: The OAuth 2.0 Authorization Framework 23

RFC 6749 OAuth 2.0 October 2012

2.3. Client Authentication

If the client type is confidential, the client and authorization
server establish a client authentication method suitable for the
security requirements of the authorization server. The authorization
server MAY accept any form of client authentication meeting its
security requirements.

Confidential clients are typically issued (or establish) a set of
client credentials used for authenticating with the authorization
server (e.g., password, public/private key pair).

The authorization server MAY establish a client authentication method
with public clients. However, the authorization server MUST NOT rely
on public client authentication for the purpose of identifying the
client.

The client MUST NOT use more than one authentication method in each
request.

2.3.1. Client Password

Clients in possession of a client password MAY use the HTTP Basic
authentication scheme as defined in [RFC2617] to authenticate with
the authorization server. The client identifier is encoded using the
"application/x-www-form-urlencoded" encoding algorithm per
Appendix B, and the encoded value is used as the username; the client
password is encoded using the same algorithm and used as the
password. The authorization server MUST support the HTTP Basic
authentication scheme for authenticating clients that were issued a
client password.

For example (with extra line breaks for display purposes only):

Authorization: Basic czZCaGRSa3F0Mzo3RmpmcDBaQnIxS3REUmJuZlZkbUl3

Alternatively, the authorization server MAY support including the
client credentials in the request-body using the following
parameters:

client_id
REQUIRED. The client identifier issued to the client during
the registration process described by Section 2.2.

client_secret
REQUIRED. The client secret. The client MAY omit the
parameter if the client secret is an empty string.

Hardt Standards Track [Page 16]

24 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

Including the client credentials in the request-body using the two
parameters is NOT RECOMMENDED and SHOULD be limited to clients unable
to directly utilize the HTTP Basic authentication scheme (or other
password-based HTTP authentication schemes). The parameters can only
be transmitted in the request-body and MUST NOT be included in the
request URI.

For example, a request to refresh an access token (Section 6) using
the body parameters (with extra line breaks for display purposes
only):

POST /token HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded

grant_type=refresh_token&refresh_token=tGzv3JOkF0XG5Qx2TlKWIA
&client_id=s6BhdRkqt3&client_secret=7Fjfp0ZBr1KtDRbnfVdmIw

The authorization server MUST require the use of TLS as described in
Section 1.6 when sending requests using password authentication.

Since this client authentication method involves a password, the
authorization server MUST protect any endpoint utilizing it against
brute force attacks.

2.3.2. Other Authentication Methods

The authorization server MAY support any suitable HTTP authentication
scheme matching its security requirements. When using other
authentication methods, the authorization server MUST define a
mapping between the client identifier (registration record) and
authentication scheme.

2.4. Unregistered Clients

This specification does not exclude the use of unregistered clients.
However, the use of such clients is beyond the scope of this
specification and requires additional security analysis and review of
its interoperability impact.

Hardt Standards Track [Page 17]

RFC 6749: The OAuth 2.0 Authorization Framework 25

RFC 6749 OAuth 2.0 October 2012

3. Protocol Endpoints

The authorization process utilizes two authorization server endpoints
(HTTP resources):

o Authorization endpoint - used by the client to obtain
authorization from the resource owner via user-agent redirection.

o Token endpoint - used by the client to exchange an authorization
grant for an access token, typically with client authentication.

As well as one client endpoint:

o Redirection endpoint - used by the authorization server to return
responses containing authorization credentials to the client via
the resource owner user-agent.

Not every authorization grant type utilizes both endpoints.
Extension grant types MAY define additional endpoints as needed.

3.1. Authorization Endpoint

The authorization endpoint is used to interact with the resource
owner and obtain an authorization grant. The authorization server
MUST first verify the identity of the resource owner. The way in
which the authorization server authenticates the resource owner
(e.g., username and password login, session cookies) is beyond the
scope of this specification.

The means through which the client obtains the location of the
authorization endpoint are beyond the scope of this specification,
but the location is typically provided in the service documentation.

The endpoint URI MAY include an "application/x-www-form-urlencoded"
formatted (per Appendix B) query component ([RFC3986] Section 3.4),
which MUST be retained when adding additional query parameters. The
endpoint URI MUST NOT include a fragment component.

Since requests to the authorization endpoint result in user
authentication and the transmission of clear-text credentials (in the
HTTP response), the authorization server MUST require the use of TLS
as described in Section 1.6 when sending requests to the
authorization endpoint.

The authorization server MUST support the use of the HTTP "GET"
method [RFC2616] for the authorization endpoint and MAY support the
use of the "POST" method as well.

Hardt Standards Track [Page 18]

26 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

Parameters sent without a value MUST be treated as if they were
omitted from the request. The authorization server MUST ignore
unrecognized request parameters. Request and response parameters
MUST NOT be included more than once.

3.1.1. Response Type

The authorization endpoint is used by the authorization code grant
type and implicit grant type flows. The client informs the
authorization server of the desired grant type using the following
parameter:

response_type
REQUIRED. The value MUST be one of "code" for requesting an
authorization code as described by Section 4.1.1, "token" for
requesting an access token (implicit grant) as described by
Section 4.2.1, or a registered extension value as described by
Section 8.4.

Extension response types MAY contain a space-delimited (%x20) list of
values, where the order of values does not matter (e.g., response
type "a b" is the same as "b a"). The meaning of such composite
response types is defined by their respective specifications.

If an authorization request is missing the "response_type" parameter,
or if the response type is not understood, the authorization server
MUST return an error response as described in Section 4.1.2.1.

3.1.2. Redirection Endpoint

After completing its interaction with the resource owner, the
authorization server directs the resource owner's user-agent back to
the client. The authorization server redirects the user-agent to the
client's redirection endpoint previously established with the
authorization server during the client registration process or when
making the authorization request.

The redirection endpoint URI MUST be an absolute URI as defined by
[RFC3986] Section 4.3. The endpoint URI MAY include an
"application/x-www-form-urlencoded" formatted (per Appendix B) query
component ([RFC3986] Section 3.4), which MUST be retained when adding
additional query parameters. The endpoint URI MUST NOT include a
fragment component.

Hardt Standards Track [Page 19]

RFC 6749: The OAuth 2.0 Authorization Framework 27

RFC 6749 OAuth 2.0 October 2012

3.1.2.1. Endpoint Request Confidentiality

The redirection endpoint SHOULD require the use of TLS as described
in Section 1.6 when the requested response type is "code" or "token",
or when the redirection request will result in the transmission of
sensitive credentials over an open network. This specification does
not mandate the use of TLS because at the time of this writing,
requiring clients to deploy TLS is a significant hurdle for many
client developers. If TLS is not available, the authorization server
SHOULD warn the resource owner about the insecure endpoint prior to
redirection (e.g., display a message during the authorization
request).

Lack of transport-layer security can have a severe impact on the
security of the client and the protected resources it is authorized
to access. The use of transport-layer security is particularly
critical when the authorization process is used as a form of
delegated end-user authentication by the client (e.g., third-party
sign-in service).

3.1.2.2. Registration Requirements

The authorization server MUST require the following clients to
register their redirection endpoint:

o Public clients.

o Confidential clients utilizing the implicit grant type.

The authorization server SHOULD require all clients to register their
redirection endpoint prior to utilizing the authorization endpoint.

The authorization server SHOULD require the client to provide the
complete redirection URI (the client MAY use the "state" request
parameter to achieve per-request customization). If requiring the
registration of the complete redirection URI is not possible, the
authorization server SHOULD require the registration of the URI
scheme, authority, and path (allowing the client to dynamically vary
only the query component of the redirection URI when requesting
authorization).

The authorization server MAY allow the client to register multiple
redirection endpoints.

Lack of a redirection URI registration requirement can enable an
attacker to use the authorization endpoint as an open redirector as
described in Section 10.15.

Hardt Standards Track [Page 20]

28 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

3.1.2.3. Dynamic Configuration

If multiple redirection URIs have been registered, if only part of
the redirection URI has been registered, or if no redirection URI has
been registered, the client MUST include a redirection URI with the
authorization request using the "redirect_uri" request parameter.

When a redirection URI is included in an authorization request, the
authorization server MUST compare and match the value received
against at least one of the registered redirection URIs (or URI
components) as defined in [RFC3986] Section 6, if any redirection
URIs were registered. If the client registration included the full
redirection URI, the authorization server MUST compare the two URIs
using simple string comparison as defined in [RFC3986] Section 6.2.1.

3.1.2.4. Invalid Endpoint

If an authorization request fails validation due to a missing,
invalid, or mismatching redirection URI, the authorization server
SHOULD inform the resource owner of the error and MUST NOT
automatically redirect the user-agent to the invalid redirection URI.

3.1.2.5. Endpoint Content

The redirection request to the client's endpoint typically results in
an HTML document response, processed by the user-agent. If the HTML
response is served directly as the result of the redirection request,
any script included in the HTML document will execute with full
access to the redirection URI and the credentials it contains.

The client SHOULD NOT include any third-party scripts (e.g., third-
party analytics, social plug-ins, ad networks) in the redirection
endpoint response. Instead, it SHOULD extract the credentials from
the URI and redirect the user-agent again to another endpoint without
exposing the credentials (in the URI or elsewhere). If third-party
scripts are included, the client MUST ensure that its own scripts
(used to extract and remove the credentials from the URI) will
execute first.

3.2. Token Endpoint

The token endpoint is used by the client to obtain an access token by
presenting its authorization grant or refresh token. The token
endpoint is used with every authorization grant except for the
implicit grant type (since an access token is issued directly).

Hardt Standards Track [Page 21]

RFC 6749: The OAuth 2.0 Authorization Framework 29

RFC 6749 OAuth 2.0 October 2012

The means through which the client obtains the location of the token
endpoint are beyond the scope of this specification, but the location
is typically provided in the service documentation.

The endpoint URI MAY include an "application/x-www-form-urlencoded"
formatted (per Appendix B) query component ([RFC3986] Section 3.4),
which MUST be retained when adding additional query parameters. The
endpoint URI MUST NOT include a fragment component.

Since requests to the token endpoint result in the transmission of
clear-text credentials (in the HTTP request and response), the
authorization server MUST require the use of TLS as described in
Section 1.6 when sending requests to the token endpoint.

The client MUST use the HTTP "POST" method when making access token
requests.

Parameters sent without a value MUST be treated as if they were
omitted from the request. The authorization server MUST ignore
unrecognized request parameters. Request and response parameters
MUST NOT be included more than once.

3.2.1. Client Authentication

Confidential clients or other clients issued client credentials MUST
authenticate with the authorization server as described in
Section 2.3 when making requests to the token endpoint. Client
authentication is used for:

o Enforcing the binding of refresh tokens and authorization codes to
the client they were issued to. Client authentication is critical
when an authorization code is transmitted to the redirection
endpoint over an insecure channel or when the redirection URI has
not been registered in full.

o Recovering from a compromised client by disabling the client or
changing its credentials, thus preventing an attacker from abusing
stolen refresh tokens. Changing a single set of client
credentials is significantly faster than revoking an entire set of
refresh tokens.

o Implementing authentication management best practices, which
require periodic credential rotation. Rotation of an entire set
of refresh tokens can be challenging, while rotation of a single
set of client credentials is significantly easier.

Hardt Standards Track [Page 22]

30 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

A client MAY use the "client_id" request parameter to identify itself
when sending requests to the token endpoint. In the
"authorization_code" "grant_type" request to the token endpoint, an
unauthenticated client MUST send its "client_id" to prevent itself
from inadvertently accepting a code intended for a client with a
different "client_id". This protects the client from substitution of
the authentication code. (It provides no additional security for the
protected resource.)

3.3. Access Token Scope

The authorization and token endpoints allow the client to specify the
scope of the access request using the "scope" request parameter. In
turn, the authorization server uses the "scope" response parameter to
inform the client of the scope of the access token issued.

The value of the scope parameter is expressed as a list of space-
delimited, case-sensitive strings. The strings are defined by the
authorization server. If the value contains multiple space-delimited
strings, their order does not matter, and each string adds an
additional access range to the requested scope.

scope = scope-token *(SP scope-token)
scope-token = 1*(%x21 / %x23-5B / %x5D-7E)

The authorization server MAY fully or partially ignore the scope
requested by the client, based on the authorization server policy or
the resource owner's instructions. If the issued access token scope
is different from the one requested by the client, the authorization
server MUST include the "scope" response parameter to inform the
client of the actual scope granted.

If the client omits the scope parameter when requesting
authorization, the authorization server MUST either process the
request using a pre-defined default value or fail the request
indicating an invalid scope. The authorization server SHOULD
document its scope requirements and default value (if defined).

4. Obtaining Authorization

To request an access token, the client obtains authorization from the
resource owner. The authorization is expressed in the form of an
authorization grant, which the client uses to request the access
token. OAuth defines four grant types: authorization code, implicit,
resource owner password credentials, and client credentials. It also
provides an extension mechanism for defining additional grant types.

Hardt Standards Track [Page 23]

RFC 6749: The OAuth 2.0 Authorization Framework 31

RFC 6749 OAuth 2.0 October 2012

4.1. Authorization Code Grant

The authorization code grant type is used to obtain both access
tokens and refresh tokens and is optimized for confidential clients.
Since this is a redirection-based flow, the client must be capable of
interacting with the resource owner's user-agent (typically a web
browser) and capable of receiving incoming requests (via redirection)
from the authorization server.

+----------+
| Resource |
| Owner |
| |
+----------+

^
|
(B)

+----|-----+ Client Identifier +---------------+
-+----(A)-- & Redirection URI ---->		
User-		Authorization
Agent -+----(B)-- User authenticates --->	Server	
-+----(C)-- Authorization Code ---<		
+-	----	---+ +---------------+
	^ v	
(A) (C)		
^ v | |

+---------+ | |
	>---(D)-- Authorization Code ---------'
Client	& Redirection URI
	<---(E)----- Access Token -------------------'
+---------+ (w/ Optional Refresh Token)

Note: The lines illustrating steps (A), (B), and (C) are broken into
two parts as they pass through the user-agent.

Figure 3: Authorization Code Flow

Hardt Standards Track [Page 24]

32 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

The flow illustrated in Figure 3 includes the following steps:

(A) The client initiates the flow by directing the resource owner's
user-agent to the authorization endpoint. The client includes
its client identifier, requested scope, local state, and a
redirection URI to which the authorization server will send the
user-agent back once access is granted (or denied).

(B) The authorization server authenticates the resource owner (via
the user-agent) and establishes whether the resource owner
grants or denies the client's access request.

(C) Assuming the resource owner grants access, the authorization
server redirects the user-agent back to the client using the
redirection URI provided earlier (in the request or during
client registration). The redirection URI includes an
authorization code and any local state provided by the client
earlier.

(D) The client requests an access token from the authorization
server's token endpoint by including the authorization code
received in the previous step. When making the request, the
client authenticates with the authorization server. The client
includes the redirection URI used to obtain the authorization
code for verification.

(E) The authorization server authenticates the client, validates the
authorization code, and ensures that the redirection URI
received matches the URI used to redirect the client in
step (C). If valid, the authorization server responds back with
an access token and, optionally, a refresh token.

4.1.1. Authorization Request

The client constructs the request URI by adding the following
parameters to the query component of the authorization endpoint URI
using the "application/x-www-form-urlencoded" format, per Appendix B:

response_type
REQUIRED. Value MUST be set to "code".

client_id
REQUIRED. The client identifier as described in Section 2.2.

redirect_uri
OPTIONAL. As described in Section 3.1.2.

Hardt Standards Track [Page 25]

RFC 6749: The OAuth 2.0 Authorization Framework 33

RFC 6749 OAuth 2.0 October 2012

scope
OPTIONAL. The scope of the access request as described by
Section 3.3.

state
RECOMMENDED. An opaque value used by the client to maintain
state between the request and callback. The authorization
server includes this value when redirecting the user-agent back
to the client. The parameter SHOULD be used for preventing
cross-site request forgery as described in Section 10.12.

The client directs the resource owner to the constructed URI using an
HTTP redirection response, or by other means available to it via the
user-agent.

For example, the client directs the user-agent to make the following
HTTP request using TLS (with extra line breaks for display purposes
only):

GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=xyz
&redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1

Host: server.example.com

The authorization server validates the request to ensure that all
required parameters are present and valid. If the request is valid,
the authorization server authenticates the resource owner and obtains
an authorization decision (by asking the resource owner or by
establishing approval via other means).

When a decision is established, the authorization server directs the
user-agent to the provided client redirection URI using an HTTP
redirection response, or by other means available to it via the
user-agent.

4.1.2. Authorization Response

If the resource owner grants the access request, the authorization
server issues an authorization code and delivers it to the client by
adding the following parameters to the query component of the
redirection URI using the "application/x-www-form-urlencoded" format,
per Appendix B:

code
REQUIRED. The authorization code generated by the
authorization server. The authorization code MUST expire
shortly after it is issued to mitigate the risk of leaks. A
maximum authorization code lifetime of 10 minutes is
RECOMMENDED. The client MUST NOT use the authorization code

Hardt Standards Track [Page 26]

34 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

more than once. If an authorization code is used more than
once, the authorization server MUST deny the request and SHOULD
revoke (when possible) all tokens previously issued based on
that authorization code. The authorization code is bound to
the client identifier and redirection URI.

state
REQUIRED if the "state" parameter was present in the client
authorization request. The exact value received from the
client.

For example, the authorization server redirects the user-agent by
sending the following HTTP response:

HTTP/1.1 302 Found
Location: https://client.example.com/cb?code=SplxlOBeZQQYbYS6WxSbIA

&state=xyz

The client MUST ignore unrecognized response parameters. The
authorization code string size is left undefined by this
specification. The client should avoid making assumptions about code
value sizes. The authorization server SHOULD document the size of
any value it issues.

4.1.2.1. Error Response

If the request fails due to a missing, invalid, or mismatching
redirection URI, or if the client identifier is missing or invalid,
the authorization server SHOULD inform the resource owner of the
error and MUST NOT automatically redirect the user-agent to the
invalid redirection URI.

If the resource owner denies the access request or if the request
fails for reasons other than a missing or invalid redirection URI,
the authorization server informs the client by adding the following
parameters to the query component of the redirection URI using the
"application/x-www-form-urlencoded" format, per Appendix B:

error
REQUIRED. A single ASCII [USASCII] error code from the
following:

invalid_request
The request is missing a required parameter, includes an
invalid parameter value, includes a parameter more than
once, or is otherwise malformed.

Hardt Standards Track [Page 27]

RFC 6749: The OAuth 2.0 Authorization Framework 35

RFC 6749 OAuth 2.0 October 2012

unauthorized_client
The client is not authorized to request an authorization
code using this method.

access_denied
The resource owner or authorization server denied the
request.

unsupported_response_type
The authorization server does not support obtaining an
authorization code using this method.

invalid_scope
The requested scope is invalid, unknown, or malformed.

server_error
The authorization server encountered an unexpected
condition that prevented it from fulfilling the request.
(This error code is needed because a 500 Internal Server
Error HTTP status code cannot be returned to the client
via an HTTP redirect.)

temporarily_unavailable
The authorization server is currently unable to handle
the request due to a temporary overloading or maintenance
of the server. (This error code is needed because a 503
Service Unavailable HTTP status code cannot be returned
to the client via an HTTP redirect.)

Values for the "error" parameter MUST NOT include characters
outside the set %x20-21 / %x23-5B / %x5D-7E.

error_description
OPTIONAL. Human-readable ASCII [USASCII] text providing
additional information, used to assist the client developer in
understanding the error that occurred.
Values for the "error_description" parameter MUST NOT include
characters outside the set %x20-21 / %x23-5B / %x5D-7E.

error_uri
OPTIONAL. A URI identifying a human-readable web page with
information about the error, used to provide the client
developer with additional information about the error.
Values for the "error_uri" parameter MUST conform to the
URI-reference syntax and thus MUST NOT include characters
outside the set %x21 / %x23-5B / %x5D-7E.

Hardt Standards Track [Page 28]

36 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

state
REQUIRED if a "state" parameter was present in the client
authorization request. The exact value received from the
client.

For example, the authorization server redirects the user-agent by
sending the following HTTP response:

HTTP/1.1 302 Found
Location: https://client.example.com/cb?error=access_denied&state=xyz

4.1.3. Access Token Request

The client makes a request to the token endpoint by sending the
following parameters using the "application/x-www-form-urlencoded"
format per Appendix B with a character encoding of UTF-8 in the HTTP
request entity-body:

grant_type
REQUIRED. Value MUST be set to "authorization_code".

code
REQUIRED. The authorization code received from the
authorization server.

redirect_uri
REQUIRED, if the "redirect_uri" parameter was included in the
authorization request as described in Section 4.1.1, and their
values MUST be identical.

client_id
REQUIRED, if the client is not authenticating with the
authorization server as described in Section 3.2.1.

If the client type is confidential or the client was issued client
credentials (or assigned other authentication requirements), the
client MUST authenticate with the authorization server as described
in Section 3.2.1.

Hardt Standards Track [Page 29]

RFC 6749: The OAuth 2.0 Authorization Framework 37

RFC 6749 OAuth 2.0 October 2012

For example, the client makes the following HTTP request using TLS
(with extra line breaks for display purposes only):

POST /token HTTP/1.1
Host: server.example.com
Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA
&redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb

The authorization server MUST:

o require client authentication for confidential clients or for any
client that was issued client credentials (or with other
authentication requirements),

o authenticate the client if client authentication is included,

o ensure that the authorization code was issued to the authenticated
confidential client, or if the client is public, ensure that the
code was issued to "client_id" in the request,

o verify that the authorization code is valid, and

o ensure that the "redirect_uri" parameter is present if the
"redirect_uri" parameter was included in the initial authorization
request as described in Section 4.1.1, and if included ensure that
their values are identical.

4.1.4. Access Token Response

If the access token request is valid and authorized, the
authorization server issues an access token and optional refresh
token as described in Section 5.1. If the request client
authentication failed or is invalid, the authorization server returns
an error response as described in Section 5.2.

Hardt Standards Track [Page 30]

38 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

An example successful response:

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache

{
"access_token":"2YotnFZFEjr1zCsicMWpAA",
"token_type":"example",
"expires_in":3600,
"refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",
"example_parameter":"example_value"

}

4.2. Implicit Grant

The implicit grant type is used to obtain access tokens (it does not
support the issuance of refresh tokens) and is optimized for public
clients known to operate a particular redirection URI. These clients
are typically implemented in a browser using a scripting language
such as JavaScript.

Since this is a redirection-based flow, the client must be capable of
interacting with the resource owner's user-agent (typically a web
browser) and capable of receiving incoming requests (via redirection)
from the authorization server.

Unlike the authorization code grant type, in which the client makes
separate requests for authorization and for an access token, the
client receives the access token as the result of the authorization
request.

The implicit grant type does not include client authentication, and
relies on the presence of the resource owner and the registration of
the redirection URI. Because the access token is encoded into the
redirection URI, it may be exposed to the resource owner and other
applications residing on the same device.

Hardt Standards Track [Page 31]

RFC 6749: The OAuth 2.0 Authorization Framework 39

RFC 6749 OAuth 2.0 October 2012

+----------+
| Resource |
| Owner |
| |
+----------+

^
|
(B)

+----|-----+ Client Identifier +---------------+
-+----(A)-- & Redirection URI --->		
User-		Authorization
Agent -	----(B)-- User authenticates -->	Server
	<---(C)--- Redirection URI ----<	
	with Access Token +---------------+	
	in Fragment	
	+---------------+	
	----(D)--- Redirection URI ---->	Web-Hosted
	without Fragment	Client
		Resource
(F)	<---(E)------- Script ---------<	
	+---------------+	
+-	--------+	
(A) (G) Access Token		
^ v

+---------+
| |
| Client |
| |
+---------+

Note: The lines illustrating steps (A) and (B) are broken into two
parts as they pass through the user-agent.

Figure 4: Implicit Grant Flow

Hardt Standards Track [Page 32]

40 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

The flow illustrated in Figure 4 includes the following steps:

(A) The client initiates the flow by directing the resource owner's
user-agent to the authorization endpoint. The client includes
its client identifier, requested scope, local state, and a
redirection URI to which the authorization server will send the
user-agent back once access is granted (or denied).

(B) The authorization server authenticates the resource owner (via
the user-agent) and establishes whether the resource owner
grants or denies the client's access request.

(C) Assuming the resource owner grants access, the authorization
server redirects the user-agent back to the client using the
redirection URI provided earlier. The redirection URI includes
the access token in the URI fragment.

(D) The user-agent follows the redirection instructions by making a
request to the web-hosted client resource (which does not
include the fragment per [RFC2616]). The user-agent retains the
fragment information locally.

(E) The web-hosted client resource returns a web page (typically an
HTML document with an embedded script) capable of accessing the
full redirection URI including the fragment retained by the
user-agent, and extracting the access token (and other
parameters) contained in the fragment.

(F) The user-agent executes the script provided by the web-hosted
client resource locally, which extracts the access token.

(G) The user-agent passes the access token to the client.

See Sections 1.3.2 and 9 for background on using the implicit grant.
See Sections 10.3 and 10.16 for important security considerations
when using the implicit grant.

4.2.1. Authorization Request

The client constructs the request URI by adding the following
parameters to the query component of the authorization endpoint URI
using the "application/x-www-form-urlencoded" format, per Appendix B:

response_type
REQUIRED. Value MUST be set to "token".

client_id
REQUIRED. The client identifier as described in Section 2.2.

Hardt Standards Track [Page 33]

RFC 6749: The OAuth 2.0 Authorization Framework 41

RFC 6749 OAuth 2.0 October 2012

redirect_uri
OPTIONAL. As described in Section 3.1.2.

scope
OPTIONAL. The scope of the access request as described by
Section 3.3.

state
RECOMMENDED. An opaque value used by the client to maintain
state between the request and callback. The authorization
server includes this value when redirecting the user-agent back
to the client. The parameter SHOULD be used for preventing
cross-site request forgery as described in Section 10.12.

The client directs the resource owner to the constructed URI using an
HTTP redirection response, or by other means available to it via the
user-agent.

For example, the client directs the user-agent to make the following
HTTP request using TLS (with extra line breaks for display purposes
only):

GET /authorize?response_type=token&client_id=s6BhdRkqt3&state=xyz
&redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1

Host: server.example.com

The authorization server validates the request to ensure that all
required parameters are present and valid. The authorization server
MUST verify that the redirection URI to which it will redirect the
access token matches a redirection URI registered by the client as
described in Section 3.1.2.

If the request is valid, the authorization server authenticates the
resource owner and obtains an authorization decision (by asking the
resource owner or by establishing approval via other means).

When a decision is established, the authorization server directs the
user-agent to the provided client redirection URI using an HTTP
redirection response, or by other means available to it via the
user-agent.

Hardt Standards Track [Page 34]

42 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

4.2.2. Access Token Response

If the resource owner grants the access request, the authorization
server issues an access token and delivers it to the client by adding
the following parameters to the fragment component of the redirection
URI using the "application/x-www-form-urlencoded" format, per
Appendix B:

access_token
REQUIRED. The access token issued by the authorization server.

token_type
REQUIRED. The type of the token issued as described in
Section 7.1. Value is case insensitive.

expires_in
RECOMMENDED. The lifetime in seconds of the access token. For
example, the value "3600" denotes that the access token will
expire in one hour from the time the response was generated.
If omitted, the authorization server SHOULD provide the
expiration time via other means or document the default value.

scope
OPTIONAL, if identical to the scope requested by the client;
otherwise, REQUIRED. The scope of the access token as
described by Section 3.3.

state
REQUIRED if the "state" parameter was present in the client
authorization request. The exact value received from the
client.

The authorization server MUST NOT issue a refresh token.

For example, the authorization server redirects the user-agent by
sending the following HTTP response (with extra line breaks for
display purposes only):

HTTP/1.1 302 Found
Location: http://example.com/cb#access_token=2YotnFZFEjr1zCsicMWpAA

&state=xyz&token_type=example&expires_in=3600

Developers should note that some user-agents do not support the
inclusion of a fragment component in the HTTP "Location" response
header field. Such clients will require using other methods for
redirecting the client than a 3xx redirection response -- for
example, returning an HTML page that includes a 'continue' button
with an action linked to the redirection URI.

Hardt Standards Track [Page 35]

RFC 6749: The OAuth 2.0 Authorization Framework 43

RFC 6749 OAuth 2.0 October 2012

The client MUST ignore unrecognized response parameters. The access
token string size is left undefined by this specification. The
client should avoid making assumptions about value sizes. The
authorization server SHOULD document the size of any value it issues.

4.2.2.1. Error Response

If the request fails due to a missing, invalid, or mismatching
redirection URI, or if the client identifier is missing or invalid,
the authorization server SHOULD inform the resource owner of the
error and MUST NOT automatically redirect the user-agent to the
invalid redirection URI.

If the resource owner denies the access request or if the request
fails for reasons other than a missing or invalid redirection URI,
the authorization server informs the client by adding the following
parameters to the fragment component of the redirection URI using the
"application/x-www-form-urlencoded" format, per Appendix B:

error
REQUIRED. A single ASCII [USASCII] error code from the
following:

invalid_request
The request is missing a required parameter, includes an
invalid parameter value, includes a parameter more than
once, or is otherwise malformed.

unauthorized_client
The client is not authorized to request an access token
using this method.

access_denied
The resource owner or authorization server denied the
request.

unsupported_response_type
The authorization server does not support obtaining an
access token using this method.

invalid_scope
The requested scope is invalid, unknown, or malformed.

Hardt Standards Track [Page 36]

44 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

server_error
The authorization server encountered an unexpected
condition that prevented it from fulfilling the request.
(This error code is needed because a 500 Internal Server
Error HTTP status code cannot be returned to the client
via an HTTP redirect.)

temporarily_unavailable
The authorization server is currently unable to handle
the request due to a temporary overloading or maintenance
of the server. (This error code is needed because a 503
Service Unavailable HTTP status code cannot be returned
to the client via an HTTP redirect.)

Values for the "error" parameter MUST NOT include characters
outside the set %x20-21 / %x23-5B / %x5D-7E.

error_description
OPTIONAL. Human-readable ASCII [USASCII] text providing
additional information, used to assist the client developer in
understanding the error that occurred.
Values for the "error_description" parameter MUST NOT include
characters outside the set %x20-21 / %x23-5B / %x5D-7E.

error_uri
OPTIONAL. A URI identifying a human-readable web page with
information about the error, used to provide the client
developer with additional information about the error.
Values for the "error_uri" parameter MUST conform to the
URI-reference syntax and thus MUST NOT include characters
outside the set %x21 / %x23-5B / %x5D-7E.

state
REQUIRED if a "state" parameter was present in the client
authorization request. The exact value received from the
client.

For example, the authorization server redirects the user-agent by
sending the following HTTP response:

HTTP/1.1 302 Found
Location: https://client.example.com/cb#error=access_denied&state=xyz

4.3. Resource Owner Password Credentials Grant

The resource owner password credentials grant type is suitable in
cases where the resource owner has a trust relationship with the
client, such as the device operating system or a highly privileged

Hardt Standards Track [Page 37]

RFC 6749: The OAuth 2.0 Authorization Framework 45

RFC 6749 OAuth 2.0 October 2012

application. The authorization server should take special care when
enabling this grant type and only allow it when other flows are not
viable.

This grant type is suitable for clients capable of obtaining the
resource owner's credentials (username and password, typically using
an interactive form). It is also used to migrate existing clients
using direct authentication schemes such as HTTP Basic or Digest
authentication to OAuth by converting the stored credentials to an
access token.

+----------+
| Resource |
| Owner |
| |
+----------+

v
| Resource Owner
(A) Password Credentials
|
v

+---------+ +---------------+
	>--(B)---- Resource Owner ------->	
	Password Credentials	Authorization
Client		Server
	<--(C)---- Access Token ---------<	
	(w/ Optional Refresh Token)	
+---------+ +---------------+

Figure 5: Resource Owner Password Credentials Flow

The flow illustrated in Figure 5 includes the following steps:

(A) The resource owner provides the client with its username and
password.

(B) The client requests an access token from the authorization
server's token endpoint by including the credentials received
from the resource owner. When making the request, the client
authenticates with the authorization server.

(C) The authorization server authenticates the client and validates
the resource owner credentials, and if valid, issues an access
token.

Hardt Standards Track [Page 38]

46 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

4.3.1. Authorization Request and Response

The method through which the client obtains the resource owner
credentials is beyond the scope of this specification. The client
MUST discard the credentials once an access token has been obtained.

4.3.2. Access Token Request

The client makes a request to the token endpoint by adding the
following parameters using the "application/x-www-form-urlencoded"
format per Appendix B with a character encoding of UTF-8 in the HTTP
request entity-body:

grant_type
REQUIRED. Value MUST be set to "password".

username
REQUIRED. The resource owner username.

password
REQUIRED. The resource owner password.

scope
OPTIONAL. The scope of the access request as described by
Section 3.3.

If the client type is confidential or the client was issued client
credentials (or assigned other authentication requirements), the
client MUST authenticate with the authorization server as described
in Section 3.2.1.

For example, the client makes the following HTTP request using
transport-layer security (with extra line breaks for display purposes
only):

POST /token HTTP/1.1
Host: server.example.com
Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
Content-Type: application/x-www-form-urlencoded

grant_type=password&username=johndoe&password=A3ddj3w

Hardt Standards Track [Page 39]

RFC 6749: The OAuth 2.0 Authorization Framework 47

RFC 6749 OAuth 2.0 October 2012

The authorization server MUST:

o require client authentication for confidential clients or for any
client that was issued client credentials (or with other
authentication requirements),

o authenticate the client if client authentication is included, and

o validate the resource owner password credentials using its
existing password validation algorithm.

Since this access token request utilizes the resource owner's
password, the authorization server MUST protect the endpoint against
brute force attacks (e.g., using rate-limitation or generating
alerts).

4.3.3. Access Token Response

If the access token request is valid and authorized, the
authorization server issues an access token and optional refresh
token as described in Section 5.1. If the request failed client
authentication or is invalid, the authorization server returns an
error response as described in Section 5.2.

An example successful response:

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache

{
"access_token":"2YotnFZFEjr1zCsicMWpAA",
"token_type":"example",
"expires_in":3600,
"refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",
"example_parameter":"example_value"

}

4.4. Client Credentials Grant

The client can request an access token using only its client
credentials (or other supported means of authentication) when the
client is requesting access to the protected resources under its
control, or those of another resource owner that have been previously
arranged with the authorization server (the method of which is beyond
the scope of this specification).

Hardt Standards Track [Page 40]

48 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

The client credentials grant type MUST only be used by confidential
clients.

+---------+ +---------------+
	>--(A)- Client Authentication --->	Authorization
Client		Server
	<--(B)---- Access Token ---------<	
+---------+ +---------------+

Figure 6: Client Credentials Flow

The flow illustrated in Figure 6 includes the following steps:

(A) The client authenticates with the authorization server and
requests an access token from the token endpoint.

(B) The authorization server authenticates the client, and if valid,
issues an access token.

4.4.1. Authorization Request and Response

Since the client authentication is used as the authorization grant,
no additional authorization request is needed.

4.4.2. Access Token Request

The client makes a request to the token endpoint by adding the
following parameters using the "application/x-www-form-urlencoded"
format per Appendix B with a character encoding of UTF-8 in the HTTP
request entity-body:

grant_type
REQUIRED. Value MUST be set to "client_credentials".

scope
OPTIONAL. The scope of the access request as described by
Section 3.3.

The client MUST authenticate with the authorization server as
described in Section 3.2.1.

Hardt Standards Track [Page 41]

RFC 6749: The OAuth 2.0 Authorization Framework 49

RFC 6749 OAuth 2.0 October 2012

For example, the client makes the following HTTP request using
transport-layer security (with extra line breaks for display purposes
only):

POST /token HTTP/1.1
Host: server.example.com
Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
Content-Type: application/x-www-form-urlencoded

grant_type=client_credentials

The authorization server MUST authenticate the client.

4.4.3. Access Token Response

If the access token request is valid and authorized, the
authorization server issues an access token as described in
Section 5.1. A refresh token SHOULD NOT be included. If the request
failed client authentication or is invalid, the authorization server
returns an error response as described in Section 5.2.

An example successful response:

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache

{
"access_token":"2YotnFZFEjr1zCsicMWpAA",
"token_type":"example",
"expires_in":3600,
"example_parameter":"example_value"

}

4.5. Extension Grants

The client uses an extension grant type by specifying the grant type
using an absolute URI (defined by the authorization server) as the
value of the "grant_type" parameter of the token endpoint, and by
adding any additional parameters necessary.

Hardt Standards Track [Page 42]

50 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

For example, to request an access token using a Security Assertion
Markup Language (SAML) 2.0 assertion grant type as defined by
[OAuth-SAML2], the client could make the following HTTP request using
TLS (with extra line breaks for display purposes only):

POST /token HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded

grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Asaml2-
bearer&assertion=PEFzc2VydGlvbiBJc3N1ZUluc3RhbnQ9IjIwMTEtMDU
[...omitted for brevity...]aG5TdGF0ZW1lbnQ-PC9Bc3NlcnRpb24-

If the access token request is valid and authorized, the
authorization server issues an access token and optional refresh
token as described in Section 5.1. If the request failed client
authentication or is invalid, the authorization server returns an
error response as described in Section 5.2.

5. Issuing an Access Token

If the access token request is valid and authorized, the
authorization server issues an access token and optional refresh
token as described in Section 5.1. If the request failed client
authentication or is invalid, the authorization server returns an
error response as described in Section 5.2.

5.1. Successful Response

The authorization server issues an access token and optional refresh
token, and constructs the response by adding the following parameters
to the entity-body of the HTTP response with a 200 (OK) status code:

access_token
REQUIRED. The access token issued by the authorization server.

token_type
REQUIRED. The type of the token issued as described in
Section 7.1. Value is case insensitive.

expires_in
RECOMMENDED. The lifetime in seconds of the access token. For
example, the value "3600" denotes that the access token will
expire in one hour from the time the response was generated.
If omitted, the authorization server SHOULD provide the
expiration time via other means or document the default value.

Hardt Standards Track [Page 43]

RFC 6749: The OAuth 2.0 Authorization Framework 51

RFC 6749 OAuth 2.0 October 2012

refresh_token
OPTIONAL. The refresh token, which can be used to obtain new
access tokens using the same authorization grant as described
in Section 6.

scope
OPTIONAL, if identical to the scope requested by the client;
otherwise, REQUIRED. The scope of the access token as
described by Section 3.3.

The parameters are included in the entity-body of the HTTP response
using the "application/json" media type as defined by [RFC4627]. The
parameters are serialized into a JavaScript Object Notation (JSON)
structure by adding each parameter at the highest structure level.
Parameter names and string values are included as JSON strings.
Numerical values are included as JSON numbers. The order of
parameters does not matter and can vary.

The authorization server MUST include the HTTP "Cache-Control"
response header field [RFC2616] with a value of "no-store" in any
response containing tokens, credentials, or other sensitive
information, as well as the "Pragma" response header field [RFC2616]
with a value of "no-cache".

For example:

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache

{
"access_token":"2YotnFZFEjr1zCsicMWpAA",
"token_type":"example",
"expires_in":3600,
"refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",
"example_parameter":"example_value"

}

The client MUST ignore unrecognized value names in the response. The
sizes of tokens and other values received from the authorization
server are left undefined. The client should avoid making
assumptions about value sizes. The authorization server SHOULD
document the size of any value it issues.

Hardt Standards Track [Page 44]

52 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

5.2. Error Response

The authorization server responds with an HTTP 400 (Bad Request)
status code (unless specified otherwise) and includes the following
parameters with the response:

error
REQUIRED. A single ASCII [USASCII] error code from the
following:

invalid_request
The request is missing a required parameter, includes an
unsupported parameter value (other than grant type),
repeats a parameter, includes multiple credentials,
utilizes more than one mechanism for authenticating the
client, or is otherwise malformed.

invalid_client
Client authentication failed (e.g., unknown client, no
client authentication included, or unsupported
authentication method). The authorization server MAY
return an HTTP 401 (Unauthorized) status code to indicate
which HTTP authentication schemes are supported. If the
client attempted to authenticate via the "Authorization"
request header field, the authorization server MUST
respond with an HTTP 401 (Unauthorized) status code and
include the "WWW-Authenticate" response header field
matching the authentication scheme used by the client.

invalid_grant
The provided authorization grant (e.g., authorization
code, resource owner credentials) or refresh token is
invalid, expired, revoked, does not match the redirection
URI used in the authorization request, or was issued to
another client.

unauthorized_client
The authenticated client is not authorized to use this
authorization grant type.

unsupported_grant_type
The authorization grant type is not supported by the
authorization server.

Hardt Standards Track [Page 45]

RFC 6749: The OAuth 2.0 Authorization Framework 53

RFC 6749 OAuth 2.0 October 2012

invalid_scope
The requested scope is invalid, unknown, malformed, or
exceeds the scope granted by the resource owner.

Values for the "error" parameter MUST NOT include characters
outside the set %x20-21 / %x23-5B / %x5D-7E.

error_description
OPTIONAL. Human-readable ASCII [USASCII] text providing
additional information, used to assist the client developer in
understanding the error that occurred.
Values for the "error_description" parameter MUST NOT include
characters outside the set %x20-21 / %x23-5B / %x5D-7E.

error_uri
OPTIONAL. A URI identifying a human-readable web page with
information about the error, used to provide the client
developer with additional information about the error.
Values for the "error_uri" parameter MUST conform to the
URI-reference syntax and thus MUST NOT include characters
outside the set %x21 / %x23-5B / %x5D-7E.

The parameters are included in the entity-body of the HTTP response
using the "application/json" media type as defined by [RFC4627]. The
parameters are serialized into a JSON structure by adding each
parameter at the highest structure level. Parameter names and string
values are included as JSON strings. Numerical values are included
as JSON numbers. The order of parameters does not matter and can
vary.

For example:

HTTP/1.1 400 Bad Request
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache

{
"error":"invalid_request"

}

Hardt Standards Track [Page 46]

54 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

6. Refreshing an Access Token

If the authorization server issued a refresh token to the client, the
client makes a refresh request to the token endpoint by adding the
following parameters using the "application/x-www-form-urlencoded"
format per Appendix B with a character encoding of UTF-8 in the HTTP
request entity-body:

grant_type
REQUIRED. Value MUST be set to "refresh_token".

refresh_token
REQUIRED. The refresh token issued to the client.

scope
OPTIONAL. The scope of the access request as described by
Section 3.3. The requested scope MUST NOT include any scope
not originally granted by the resource owner, and if omitted is
treated as equal to the scope originally granted by the
resource owner.

Because refresh tokens are typically long-lasting credentials used to
request additional access tokens, the refresh token is bound to the
client to which it was issued. If the client type is confidential or
the client was issued client credentials (or assigned other
authentication requirements), the client MUST authenticate with the
authorization server as described in Section 3.2.1.

For example, the client makes the following HTTP request using
transport-layer security (with extra line breaks for display purposes
only):

POST /token HTTP/1.1
Host: server.example.com
Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
Content-Type: application/x-www-form-urlencoded

grant_type=refresh_token&refresh_token=tGzv3JOkF0XG5Qx2TlKWIA

Hardt Standards Track [Page 47]

RFC 6749: The OAuth 2.0 Authorization Framework 55

RFC 6749 OAuth 2.0 October 2012

The authorization server MUST:

o require client authentication for confidential clients or for any
client that was issued client credentials (or with other
authentication requirements),

o authenticate the client if client authentication is included and
ensure that the refresh token was issued to the authenticated
client, and

o validate the refresh token.

If valid and authorized, the authorization server issues an access
token as described in Section 5.1. If the request failed
verification or is invalid, the authorization server returns an error
response as described in Section 5.2.

The authorization server MAY issue a new refresh token, in which case
the client MUST discard the old refresh token and replace it with the
new refresh token. The authorization server MAY revoke the old
refresh token after issuing a new refresh token to the client. If a
new refresh token is issued, the refresh token scope MUST be
identical to that of the refresh token included by the client in the
request.

7. Accessing Protected Resources

The client accesses protected resources by presenting the access
token to the resource server. The resource server MUST validate the
access token and ensure that it has not expired and that its scope
covers the requested resource. The methods used by the resource
server to validate the access token (as well as any error responses)
are beyond the scope of this specification but generally involve an
interaction or coordination between the resource server and the
authorization server.

The method in which the client utilizes the access token to
authenticate with the resource server depends on the type of access
token issued by the authorization server. Typically, it involves
using the HTTP "Authorization" request header field [RFC2617] with an
authentication scheme defined by the specification of the access
token type used, such as [RFC6750].

Hardt Standards Track [Page 48]

56 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

7.1. Access Token Types

The access token type provides the client with the information
required to successfully utilize the access token to make a protected
resource request (along with type-specific attributes). The client
MUST NOT use an access token if it does not understand the token
type.

For example, the "bearer" token type defined in [RFC6750] is utilized
by simply including the access token string in the request:

GET /resource/1 HTTP/1.1
Host: example.com
Authorization: Bearer mF_9.B5f-4.1JqM

while the "mac" token type defined in [OAuth-HTTP-MAC] is utilized by
issuing a Message Authentication Code (MAC) key together with the
access token that is used to sign certain components of the HTTP
requests:

GET /resource/1 HTTP/1.1
Host: example.com
Authorization: MAC id="h480djs93hd8",

nonce="274312:dj83hs9s",
mac="kDZvddkndxvhGRXZhvuDjEWhGeE="

The above examples are provided for illustration purposes only.
Developers are advised to consult the [RFC6750] and [OAuth-HTTP-MAC]
specifications before use.

Each access token type definition specifies the additional attributes
(if any) sent to the client together with the "access_token" response
parameter. It also defines the HTTP authentication method used to
include the access token when making a protected resource request.

7.2. Error Response

If a resource access request fails, the resource server SHOULD inform
the client of the error. While the specifics of such error responses
are beyond the scope of this specification, this document establishes
a common registry in Section 11.4 for error values to be shared among
OAuth token authentication schemes.

New authentication schemes designed primarily for OAuth token
authentication SHOULD define a mechanism for providing an error
status code to the client, in which the error values allowed are
registered in the error registry established by this specification.

Hardt Standards Track [Page 49]

RFC 6749: The OAuth 2.0 Authorization Framework 57

RFC 6749 OAuth 2.0 October 2012

Such schemes MAY limit the set of valid error codes to a subset of
the registered values. If the error code is returned using a named
parameter, the parameter name SHOULD be "error".

Other schemes capable of being used for OAuth token authentication,
but not primarily designed for that purpose, MAY bind their error
values to the registry in the same manner.

New authentication schemes MAY choose to also specify the use of the
"error_description" and "error_uri" parameters to return error
information in a manner parallel to their usage in this
specification.

8. Extensibility

8.1. Defining Access Token Types

Access token types can be defined in one of two ways: registered in
the Access Token Types registry (following the procedures in
Section 11.1), or by using a unique absolute URI as its name.

Types utilizing a URI name SHOULD be limited to vendor-specific
implementations that are not commonly applicable, and are specific to
the implementation details of the resource server where they are
used.

All other types MUST be registered. Type names MUST conform to the
type-name ABNF. If the type definition includes a new HTTP
authentication scheme, the type name SHOULD be identical to the HTTP
authentication scheme name (as defined by [RFC2617]). The token type
"example" is reserved for use in examples.

type-name = 1*name-char
name-char = "-" / "." / "_" / DIGIT / ALPHA

8.2. Defining New Endpoint Parameters

New request or response parameters for use with the authorization
endpoint or the token endpoint are defined and registered in the
OAuth Parameters registry following the procedure in Section 11.2.

Parameter names MUST conform to the param-name ABNF, and parameter
values syntax MUST be well-defined (e.g., using ABNF, or a reference
to the syntax of an existing parameter).

param-name = 1*name-char
name-char = "-" / "." / "_" / DIGIT / ALPHA

Hardt Standards Track [Page 50]

58 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

Unregistered vendor-specific parameter extensions that are not
commonly applicable and that are specific to the implementation
details of the authorization server where they are used SHOULD
utilize a vendor-specific prefix that is not likely to conflict with
other registered values (e.g., begin with 'companyname_').

8.3. Defining New Authorization Grant Types

New authorization grant types can be defined by assigning them a
unique absolute URI for use with the "grant_type" parameter. If the
extension grant type requires additional token endpoint parameters,
they MUST be registered in the OAuth Parameters registry as described
by Section 11.2.

8.4. Defining New Authorization Endpoint Response Types

New response types for use with the authorization endpoint are
defined and registered in the Authorization Endpoint Response Types
registry following the procedure in Section 11.3. Response type
names MUST conform to the response-type ABNF.

response-type = response-name *(SP response-name)
response-name = 1*response-char
response-char = "_" / DIGIT / ALPHA

If a response type contains one or more space characters (%x20), it
is compared as a space-delimited list of values in which the order of
values does not matter. Only one order of values can be registered,
which covers all other arrangements of the same set of values.

For example, the response type "token code" is left undefined by this
specification. However, an extension can define and register the
"token code" response type. Once registered, the same combination
cannot be registered as "code token", but both values can be used to
denote the same response type.

8.5. Defining Additional Error Codes

In cases where protocol extensions (i.e., access token types,
extension parameters, or extension grant types) require additional
error codes to be used with the authorization code grant error
response (Section 4.1.2.1), the implicit grant error response
(Section 4.2.2.1), the token error response (Section 5.2), or the
resource access error response (Section 7.2), such error codes MAY be
defined.

Hardt Standards Track [Page 51]

RFC 6749: The OAuth 2.0 Authorization Framework 59

RFC 6749 OAuth 2.0 October 2012

Extension error codes MUST be registered (following the procedures in
Section 11.4) if the extension they are used in conjunction with is a
registered access token type, a registered endpoint parameter, or an
extension grant type. Error codes used with unregistered extensions
MAY be registered.

Error codes MUST conform to the error ABNF and SHOULD be prefixed by
an identifying name when possible. For example, an error identifying
an invalid value set to the extension parameter "example" SHOULD be
named "example_invalid".

error = 1*error-char
error-char = %x20-21 / %x23-5B / %x5D-7E

9. Native Applications

Native applications are clients installed and executed on the device
used by the resource owner (i.e., desktop application, native mobile
application). Native applications require special consideration
related to security, platform capabilities, and overall end-user
experience.

The authorization endpoint requires interaction between the client
and the resource owner's user-agent. Native applications can invoke
an external user-agent or embed a user-agent within the application.
For example:

o External user-agent - the native application can capture the
response from the authorization server using a redirection URI
with a scheme registered with the operating system to invoke the
client as the handler, manual copy-and-paste of the credentials,
running a local web server, installing a user-agent extension, or
by providing a redirection URI identifying a server-hosted
resource under the client's control, which in turn makes the
response available to the native application.

o Embedded user-agent - the native application obtains the response
by directly communicating with the embedded user-agent by
monitoring state changes emitted during the resource load, or
accessing the user-agent's cookies storage.

When choosing between an external or embedded user-agent, developers
should consider the following:

o An external user-agent may improve completion rate, as the
resource owner may already have an active session with the
authorization server, removing the need to re-authenticate. It
provides a familiar end-user experience and functionality. The

Hardt Standards Track [Page 52]

60 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

resource owner may also rely on user-agent features or extensions
to assist with authentication (e.g., password manager, 2-factor
device reader).

o An embedded user-agent may offer improved usability, as it removes
the need to switch context and open new windows.

o An embedded user-agent poses a security challenge because resource
owners are authenticating in an unidentified window without access
to the visual protections found in most external user-agents. An
embedded user-agent educates end-users to trust unidentified
requests for authentication (making phishing attacks easier to
execute).

When choosing between the implicit grant type and the authorization
code grant type, the following should be considered:

o Native applications that use the authorization code grant type
SHOULD do so without using client credentials, due to the native
application's inability to keep client credentials confidential.

o When using the implicit grant type flow, a refresh token is not
returned, which requires repeating the authorization process once
the access token expires.

10. Security Considerations

As a flexible and extensible framework, OAuth's security
considerations depend on many factors. The following sections
provide implementers with security guidelines focused on the three
client profiles described in Section 2.1: web application,
user-agent-based application, and native application.

A comprehensive OAuth security model and analysis, as well as
background for the protocol design, is provided by
[OAuth-THREATMODEL].

10.1. Client Authentication

The authorization server establishes client credentials with web
application clients for the purpose of client authentication. The
authorization server is encouraged to consider stronger client
authentication means than a client password. Web application clients
MUST ensure confidentiality of client passwords and other client
credentials.

Hardt Standards Track [Page 53]

RFC 6749: The OAuth 2.0 Authorization Framework 61

RFC 6749 OAuth 2.0 October 2012

The authorization server MUST NOT issue client passwords or other
client credentials to native application or user-agent-based
application clients for the purpose of client authentication. The
authorization server MAY issue a client password or other credentials
for a specific installation of a native application client on a
specific device.

When client authentication is not possible, the authorization server
SHOULD employ other means to validate the client's identity -- for
example, by requiring the registration of the client redirection URI
or enlisting the resource owner to confirm identity. A valid
redirection URI is not sufficient to verify the client's identity
when asking for resource owner authorization but can be used to
prevent delivering credentials to a counterfeit client after
obtaining resource owner authorization.

The authorization server must consider the security implications of
interacting with unauthenticated clients and take measures to limit
the potential exposure of other credentials (e.g., refresh tokens)
issued to such clients.

10.2. Client Impersonation

A malicious client can impersonate another client and obtain access
to protected resources if the impersonated client fails to, or is
unable to, keep its client credentials confidential.

The authorization server MUST authenticate the client whenever
possible. If the authorization server cannot authenticate the client
due to the client's nature, the authorization server MUST require the
registration of any redirection URI used for receiving authorization
responses and SHOULD utilize other means to protect resource owners
from such potentially malicious clients. For example, the
authorization server can engage the resource owner to assist in
identifying the client and its origin.

The authorization server SHOULD enforce explicit resource owner
authentication and provide the resource owner with information about
the client and the requested authorization scope and lifetime. It is
up to the resource owner to review the information in the context of
the current client and to authorize or deny the request.

The authorization server SHOULD NOT process repeated authorization
requests automatically (without active resource owner interaction)
without authenticating the client or relying on other measures to
ensure that the repeated request comes from the original client and
not an impersonator.

Hardt Standards Track [Page 54]

62 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

10.3. Access Tokens

Access token credentials (as well as any confidential access token
attributes) MUST be kept confidential in transit and storage, and
only shared among the authorization server, the resource servers the
access token is valid for, and the client to whom the access token is
issued. Access token credentials MUST only be transmitted using TLS
as described in Section 1.6 with server authentication as defined by
[RFC2818].

When using the implicit grant type, the access token is transmitted
in the URI fragment, which can expose it to unauthorized parties.

The authorization server MUST ensure that access tokens cannot be
generated, modified, or guessed to produce valid access tokens by
unauthorized parties.

The client SHOULD request access tokens with the minimal scope
necessary. The authorization server SHOULD take the client identity
into account when choosing how to honor the requested scope and MAY
issue an access token with less rights than requested.

This specification does not provide any methods for the resource
server to ensure that an access token presented to it by a given
client was issued to that client by the authorization server.

10.4. Refresh Tokens

Authorization servers MAY issue refresh tokens to web application
clients and native application clients.

Refresh tokens MUST be kept confidential in transit and storage, and
shared only among the authorization server and the client to whom the
refresh tokens were issued. The authorization server MUST maintain
the binding between a refresh token and the client to whom it was
issued. Refresh tokens MUST only be transmitted using TLS as
described in Section 1.6 with server authentication as defined by
[RFC2818].

The authorization server MUST verify the binding between the refresh
token and client identity whenever the client identity can be
authenticated. When client authentication is not possible, the
authorization server SHOULD deploy other means to detect refresh
token abuse.

For example, the authorization server could employ refresh token
rotation in which a new refresh token is issued with every access
token refresh response. The previous refresh token is invalidated

Hardt Standards Track [Page 55]

RFC 6749: The OAuth 2.0 Authorization Framework 63

RFC 6749 OAuth 2.0 October 2012

but retained by the authorization server. If a refresh token is
compromised and subsequently used by both the attacker and the
legitimate client, one of them will present an invalidated refresh
token, which will inform the authorization server of the breach.

The authorization server MUST ensure that refresh tokens cannot be
generated, modified, or guessed to produce valid refresh tokens by
unauthorized parties.

10.5. Authorization Codes

The transmission of authorization codes SHOULD be made over a secure
channel, and the client SHOULD require the use of TLS with its
redirection URI if the URI identifies a network resource. Since
authorization codes are transmitted via user-agent redirections, they
could potentially be disclosed through user-agent history and HTTP
referrer headers.

Authorization codes operate as plaintext bearer credentials, used to
verify that the resource owner who granted authorization at the
authorization server is the same resource owner returning to the
client to complete the process. Therefore, if the client relies on
the authorization code for its own resource owner authentication, the
client redirection endpoint MUST require the use of TLS.

Authorization codes MUST be short lived and single-use. If the
authorization server observes multiple attempts to exchange an
authorization code for an access token, the authorization server
SHOULD attempt to revoke all access tokens already granted based on
the compromised authorization code.

If the client can be authenticated, the authorization servers MUST
authenticate the client and ensure that the authorization code was
issued to the same client.

10.6. Authorization Code Redirection URI Manipulation

When requesting authorization using the authorization code grant
type, the client can specify a redirection URI via the "redirect_uri"
parameter. If an attacker can manipulate the value of the
redirection URI, it can cause the authorization server to redirect
the resource owner user-agent to a URI under the control of the
attacker with the authorization code.

An attacker can create an account at a legitimate client and initiate
the authorization flow. When the attacker's user-agent is sent to
the authorization server to grant access, the attacker grabs the
authorization URI provided by the legitimate client and replaces the

Hardt Standards Track [Page 56]

64 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

client's redirection URI with a URI under the control of the
attacker. The attacker then tricks the victim into following the
manipulated link to authorize access to the legitimate client.

Once at the authorization server, the victim is prompted with a
normal, valid request on behalf of a legitimate and trusted client,
and authorizes the request. The victim is then redirected to an
endpoint under the control of the attacker with the authorization
code. The attacker completes the authorization flow by sending the
authorization code to the client using the original redirection URI
provided by the client. The client exchanges the authorization code
with an access token and links it to the attacker's client account,
which can now gain access to the protected resources authorized by
the victim (via the client).

In order to prevent such an attack, the authorization server MUST
ensure that the redirection URI used to obtain the authorization code
is identical to the redirection URI provided when exchanging the
authorization code for an access token. The authorization server
MUST require public clients and SHOULD require confidential clients
to register their redirection URIs. If a redirection URI is provided
in the request, the authorization server MUST validate it against the
registered value.

10.7. Resource Owner Password Credentials

The resource owner password credentials grant type is often used for
legacy or migration reasons. It reduces the overall risk of storing
usernames and passwords by the client but does not eliminate the need
to expose highly privileged credentials to the client.

This grant type carries a higher risk than other grant types because
it maintains the password anti-pattern this protocol seeks to avoid.
The client could abuse the password, or the password could
unintentionally be disclosed to an attacker (e.g., via log files or
other records kept by the client).

Additionally, because the resource owner does not have control over
the authorization process (the resource owner's involvement ends when
it hands over its credentials to the client), the client can obtain
access tokens with a broader scope than desired by the resource
owner. The authorization server should consider the scope and
lifetime of access tokens issued via this grant type.

The authorization server and client SHOULD minimize use of this grant
type and utilize other grant types whenever possible.

Hardt Standards Track [Page 57]

RFC 6749: The OAuth 2.0 Authorization Framework 65

RFC 6749 OAuth 2.0 October 2012

10.8. Request Confidentiality

Access tokens, refresh tokens, resource owner passwords, and client
credentials MUST NOT be transmitted in the clear. Authorization
codes SHOULD NOT be transmitted in the clear.

The "state" and "scope" parameters SHOULD NOT include sensitive
client or resource owner information in plain text, as they can be
transmitted over insecure channels or stored insecurely.

10.9. Ensuring Endpoint Authenticity

In order to prevent man-in-the-middle attacks, the authorization
server MUST require the use of TLS with server authentication as
defined by [RFC2818] for any request sent to the authorization and
token endpoints. The client MUST validate the authorization server's
TLS certificate as defined by [RFC6125] and in accordance with its
requirements for server identity authentication.

10.10. Credentials-Guessing Attacks

The authorization server MUST prevent attackers from guessing access
tokens, authorization codes, refresh tokens, resource owner
passwords, and client credentials.

The probability of an attacker guessing generated tokens (and other
credentials not intended for handling by end-users) MUST be less than
or equal to 2^(-128) and SHOULD be less than or equal to 2^(-160).

The authorization server MUST utilize other means to protect
credentials intended for end-user usage.

10.11. Phishing Attacks

Wide deployment of this and similar protocols may cause end-users to
become inured to the practice of being redirected to websites where
they are asked to enter their passwords. If end-users are not
careful to verify the authenticity of these websites before entering
their credentials, it will be possible for attackers to exploit this
practice to steal resource owners' passwords.

Service providers should attempt to educate end-users about the risks
phishing attacks pose and should provide mechanisms that make it easy
for end-users to confirm the authenticity of their sites. Client
developers should consider the security implications of how they
interact with the user-agent (e.g., external, embedded), and the
ability of the end-user to verify the authenticity of the
authorization server.

Hardt Standards Track [Page 58]

66 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

To reduce the risk of phishing attacks, the authorization servers
MUST require the use of TLS on every endpoint used for end-user
interaction.

10.12. Cross-Site Request Forgery

Cross-site request forgery (CSRF) is an exploit in which an attacker
causes the user-agent of a victim end-user to follow a malicious URI
(e.g., provided to the user-agent as a misleading link, image, or
redirection) to a trusting server (usually established via the
presence of a valid session cookie).

A CSRF attack against the client's redirection URI allows an attacker
to inject its own authorization code or access token, which can
result in the client using an access token associated with the
attacker's protected resources rather than the victim's (e.g., save
the victim's bank account information to a protected resource
controlled by the attacker).

The client MUST implement CSRF protection for its redirection URI.
This is typically accomplished by requiring any request sent to the
redirection URI endpoint to include a value that binds the request to
the user-agent's authenticated state (e.g., a hash of the session
cookie used to authenticate the user-agent). The client SHOULD
utilize the "state" request parameter to deliver this value to the
authorization server when making an authorization request.

Once authorization has been obtained from the end-user, the
authorization server redirects the end-user's user-agent back to the
client with the required binding value contained in the "state"
parameter. The binding value enables the client to verify the
validity of the request by matching the binding value to the
user-agent's authenticated state. The binding value used for CSRF
protection MUST contain a non-guessable value (as described in
Section 10.10), and the user-agent's authenticated state (e.g.,
session cookie, HTML5 local storage) MUST be kept in a location
accessible only to the client and the user-agent (i.e., protected by
same-origin policy).

A CSRF attack against the authorization server's authorization
endpoint can result in an attacker obtaining end-user authorization
for a malicious client without involving or alerting the end-user.

The authorization server MUST implement CSRF protection for its
authorization endpoint and ensure that a malicious client cannot
obtain authorization without the awareness and explicit consent of
the resource owner.

Hardt Standards Track [Page 59]

RFC 6749: The OAuth 2.0 Authorization Framework 67

RFC 6749 OAuth 2.0 October 2012

10.13. Clickjacking

In a clickjacking attack, an attacker registers a legitimate client
and then constructs a malicious site in which it loads the
authorization server's authorization endpoint web page in a
transparent iframe overlaid on top of a set of dummy buttons, which
are carefully constructed to be placed directly under important
buttons on the authorization page. When an end-user clicks a
misleading visible button, the end-user is actually clicking an
invisible button on the authorization page (such as an "Authorize"
button). This allows an attacker to trick a resource owner into
granting its client access without the end-user's knowledge.

To prevent this form of attack, native applications SHOULD use
external browsers instead of embedding browsers within the
application when requesting end-user authorization. For most newer
browsers, avoidance of iframes can be enforced by the authorization
server using the (non-standard) "x-frame-options" header. This
header can have two values, "deny" and "sameorigin", which will block
any framing, or framing by sites with a different origin,
respectively. For older browsers, JavaScript frame-busting
techniques can be used but may not be effective in all browsers.

10.14. Code Injection and Input Validation

A code injection attack occurs when an input or otherwise external
variable is used by an application unsanitized and causes
modification to the application logic. This may allow an attacker to
gain access to the application device or its data, cause denial of
service, or introduce a wide range of malicious side-effects.

The authorization server and client MUST sanitize (and validate when
possible) any value received -- in particular, the value of the
"state" and "redirect_uri" parameters.

10.15. Open Redirectors

The authorization server, authorization endpoint, and client
redirection endpoint can be improperly configured and operate as open
redirectors. An open redirector is an endpoint using a parameter to
automatically redirect a user-agent to the location specified by the
parameter value without any validation.

Open redirectors can be used in phishing attacks, or by an attacker
to get end-users to visit malicious sites by using the URI authority
component of a familiar and trusted destination. In addition, if the
authorization server allows the client to register only part of the
redirection URI, an attacker can use an open redirector operated by

Hardt Standards Track [Page 60]

68 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

the client to construct a redirection URI that will pass the
authorization server validation but will send the authorization code
or access token to an endpoint under the control of the attacker.

10.16. Misuse of Access Token to Impersonate Resource Owner in Implicit
Flow

For public clients using implicit flows, this specification does not
provide any method for the client to determine what client an access
token was issued to.

A resource owner may willingly delegate access to a resource by
granting an access token to an attacker's malicious client. This may
be due to phishing or some other pretext. An attacker may also steal
a token via some other mechanism. An attacker may then attempt to
impersonate the resource owner by providing the access token to a
legitimate public client.

In the implicit flow (response_type=token), the attacker can easily
switch the token in the response from the authorization server,
replacing the real access token with the one previously issued to the
attacker.

Servers communicating with native applications that rely on being
passed an access token in the back channel to identify the user of
the client may be similarly compromised by an attacker creating a
compromised application that can inject arbitrary stolen access
tokens.

Any public client that makes the assumption that only the resource
owner can present it with a valid access token for the resource is
vulnerable to this type of attack.

This type of attack may expose information about the resource owner
at the legitimate client to the attacker (malicious client). This
will also allow the attacker to perform operations at the legitimate
client with the same permissions as the resource owner who originally
granted the access token or authorization code.

Authenticating resource owners to clients is out of scope for this
specification. Any specification that uses the authorization process
as a form of delegated end-user authentication to the client (e.g.,
third-party sign-in service) MUST NOT use the implicit flow without
additional security mechanisms that would enable the client to
determine if the access token was issued for its use (e.g., audience-
restricting the access token).

Hardt Standards Track [Page 61]

RFC 6749: The OAuth 2.0 Authorization Framework 69

RFC 6749 OAuth 2.0 October 2012

11. IANA Considerations

11.1. OAuth Access Token Types Registry

This specification establishes the OAuth Access Token Types registry.

Access token types are registered with a Specification Required
([RFC5226]) after a two-week review period on the
oauth-ext-review@ietf.org mailing list, on the advice of one or more
Designated Experts. However, to allow for the allocation of values
prior to publication, the Designated Expert(s) may approve
registration once they are satisfied that such a specification will
be published.

Registration requests must be sent to the oauth-ext-review@ietf.org
mailing list for review and comment, with an appropriate subject
(e.g., "Request for access token type: example").

Within the review period, the Designated Expert(s) will either
approve or deny the registration request, communicating this decision
to the review list and IANA. Denials should include an explanation
and, if applicable, suggestions as to how to make the request
successful.

IANA must only accept registry updates from the Designated Expert(s)
and should direct all requests for registration to the review mailing
list.

11.1.1. Registration Template

Type name:
The name requested (e.g., "example").

Additional Token Endpoint Response Parameters:
Additional response parameters returned together with the
"access_token" parameter. New parameters MUST be separately
registered in the OAuth Parameters registry as described by
Section 11.2.

HTTP Authentication Scheme(s):
The HTTP authentication scheme name(s), if any, used to
authenticate protected resource requests using access tokens of
this type.

Change controller:
For Standards Track RFCs, state "IETF". For others, give the name
of the responsible party. Other details (e.g., postal address,
email address, home page URI) may also be included.

Hardt Standards Track [Page 62]

70 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

Specification document(s):
Reference to the document(s) that specify the parameter,
preferably including a URI that can be used to retrieve a copy of
the document(s). An indication of the relevant sections may also
be included but is not required.

11.2. OAuth Parameters Registry

This specification establishes the OAuth Parameters registry.

Additional parameters for inclusion in the authorization endpoint
request, the authorization endpoint response, the token endpoint
request, or the token endpoint response are registered with a
Specification Required ([RFC5226]) after a two-week review period on
the oauth-ext-review@ietf.org mailing list, on the advice of one or
more Designated Experts. However, to allow for the allocation of
values prior to publication, the Designated Expert(s) may approve
registration once they are satisfied that such a specification will
be published.

Registration requests must be sent to the oauth-ext-review@ietf.org
mailing list for review and comment, with an appropriate subject
(e.g., "Request for parameter: example").

Within the review period, the Designated Expert(s) will either
approve or deny the registration request, communicating this decision
to the review list and IANA. Denials should include an explanation
and, if applicable, suggestions as to how to make the request
successful.

IANA must only accept registry updates from the Designated Expert(s)
and should direct all requests for registration to the review mailing
list.

11.2.1. Registration Template

Parameter name:
The name requested (e.g., "example").

Parameter usage location:
The location(s) where parameter can be used. The possible
locations are authorization request, authorization response, token
request, or token response.

Change controller:
For Standards Track RFCs, state "IETF". For others, give the name
of the responsible party. Other details (e.g., postal address,
email address, home page URI) may also be included.

Hardt Standards Track [Page 63]

RFC 6749: The OAuth 2.0 Authorization Framework 71

RFC 6749 OAuth 2.0 October 2012

Specification document(s):
Reference to the document(s) that specify the parameter,
preferably including a URI that can be used to retrieve a copy of
the document(s). An indication of the relevant sections may also
be included but is not required.

11.2.2. Initial Registry Contents

The OAuth Parameters registry's initial contents are:

o Parameter name: client_id
o Parameter usage location: authorization request, token request
o Change controller: IETF
o Specification document(s): RFC 6749

o Parameter name: client_secret
o Parameter usage location: token request
o Change controller: IETF
o Specification document(s): RFC 6749

o Parameter name: response_type
o Parameter usage location: authorization request
o Change controller: IETF
o Specification document(s): RFC 6749

o Parameter name: redirect_uri
o Parameter usage location: authorization request, token request
o Change controller: IETF
o Specification document(s): RFC 6749

o Parameter name: scope
o Parameter usage location: authorization request, authorization

response, token request, token response
o Change controller: IETF
o Specification document(s): RFC 6749

o Parameter name: state
o Parameter usage location: authorization request, authorization

response
o Change controller: IETF
o Specification document(s): RFC 6749

o Parameter name: code
o Parameter usage location: authorization response, token request
o Change controller: IETF
o Specification document(s): RFC 6749

Hardt Standards Track [Page 64]

72 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

o Parameter name: error_description
o Parameter usage location: authorization response, token response
o Change controller: IETF
o Specification document(s): RFC 6749

o Parameter name: error_uri
o Parameter usage location: authorization response, token response
o Change controller: IETF
o Specification document(s): RFC 6749

o Parameter name: grant_type
o Parameter usage location: token request
o Change controller: IETF
o Specification document(s): RFC 6749

o Parameter name: access_token
o Parameter usage location: authorization response, token response
o Change controller: IETF
o Specification document(s): RFC 6749

o Parameter name: token_type
o Parameter usage location: authorization response, token response
o Change controller: IETF
o Specification document(s): RFC 6749

o Parameter name: expires_in
o Parameter usage location: authorization response, token response
o Change controller: IETF
o Specification document(s): RFC 6749

o Parameter name: username
o Parameter usage location: token request
o Change controller: IETF
o Specification document(s): RFC 6749

o Parameter name: password
o Parameter usage location: token request
o Change controller: IETF
o Specification document(s): RFC 6749

o Parameter name: refresh_token
o Parameter usage location: token request, token response
o Change controller: IETF
o Specification document(s): RFC 6749

Hardt Standards Track [Page 65]

RFC 6749: The OAuth 2.0 Authorization Framework 73

RFC 6749 OAuth 2.0 October 2012

11.3. OAuth Authorization Endpoint Response Types Registry

This specification establishes the OAuth Authorization Endpoint
Response Types registry.

Additional response types for use with the authorization endpoint are
registered with a Specification Required ([RFC5226]) after a two-week
review period on the oauth-ext-review@ietf.org mailing list, on the
advice of one or more Designated Experts. However, to allow for the
allocation of values prior to publication, the Designated Expert(s)
may approve registration once they are satisfied that such a
specification will be published.

Registration requests must be sent to the oauth-ext-review@ietf.org
mailing list for review and comment, with an appropriate subject
(e.g., "Request for response type: example").

Within the review period, the Designated Expert(s) will either
approve or deny the registration request, communicating this decision
to the review list and IANA. Denials should include an explanation
and, if applicable, suggestions as to how to make the request
successful.

IANA must only accept registry updates from the Designated Expert(s)
and should direct all requests for registration to the review mailing
list.

11.3.1. Registration Template

Response type name:
The name requested (e.g., "example").

Change controller:
For Standards Track RFCs, state "IETF". For others, give the name
of the responsible party. Other details (e.g., postal address,
email address, home page URI) may also be included.

Specification document(s):
Reference to the document(s) that specify the type, preferably
including a URI that can be used to retrieve a copy of the
document(s). An indication of the relevant sections may also be
included but is not required.

Hardt Standards Track [Page 66]

74 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

11.3.2. Initial Registry Contents

The OAuth Authorization Endpoint Response Types registry's initial
contents are:

o Response type name: code
o Change controller: IETF
o Specification document(s): RFC 6749

o Response type name: token
o Change controller: IETF
o Specification document(s): RFC 6749

11.4. OAuth Extensions Error Registry

This specification establishes the OAuth Extensions Error registry.

Additional error codes used together with other protocol extensions
(i.e., extension grant types, access token types, or extension
parameters) are registered with a Specification Required ([RFC5226])
after a two-week review period on the oauth-ext-review@ietf.org
mailing list, on the advice of one or more Designated Experts.
However, to allow for the allocation of values prior to publication,
the Designated Expert(s) may approve registration once they are
satisfied that such a specification will be published.

Registration requests must be sent to the oauth-ext-review@ietf.org
mailing list for review and comment, with an appropriate subject
(e.g., "Request for error code: example").

Within the review period, the Designated Expert(s) will either
approve or deny the registration request, communicating this decision
to the review list and IANA. Denials should include an explanation
and, if applicable, suggestions as to how to make the request
successful.

IANA must only accept registry updates from the Designated Expert(s)
and should direct all requests for registration to the review mailing
list.

Hardt Standards Track [Page 67]

RFC 6749: The OAuth 2.0 Authorization Framework 75

RFC 6749 OAuth 2.0 October 2012

11.4.1. Registration Template

Error name:
The name requested (e.g., "example"). Values for the error name
MUST NOT include characters outside the set %x20-21 / %x23-5B /
%x5D-7E.

Error usage location:
The location(s) where the error can be used. The possible
locations are authorization code grant error response
(Section 4.1.2.1), implicit grant error response
(Section 4.2.2.1), token error response (Section 5.2), or resource
access error response (Section 7.2).

Related protocol extension:
The name of the extension grant type, access token type, or
extension parameter that the error code is used in conjunction
with.

Change controller:
For Standards Track RFCs, state "IETF". For others, give the name
of the responsible party. Other details (e.g., postal address,
email address, home page URI) may also be included.

Specification document(s):
Reference to the document(s) that specify the error code,
preferably including a URI that can be used to retrieve a copy of
the document(s). An indication of the relevant sections may also
be included but is not required.

12. References

12.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

[RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
Leach, P., Luotonen, A., and L. Stewart, "HTTP
Authentication: Basic and Digest Access Authentication",
RFC 2617, June 1999.

Hardt Standards Track [Page 68]

76 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

[RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

[RFC3629] Yergeau, F., "UTF-8, a transformation format of
ISO 10646", STD 63, RFC 3629, November 2003.

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", STD 66,
RFC 3986, January 2005.

[RFC4627] Crockford, D., "The application/json Media Type for
JavaScript Object Notation (JSON)", RFC 4627, July 2006.

[RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
RFC 4949, August 2007.

[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", BCP 26, RFC 5226,
May 2008.

[RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
Specifications: ABNF", STD 68, RFC 5234, January 2008.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.

[RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
Verification of Domain-Based Application Service Identity
within Internet Public Key Infrastructure Using X.509
(PKIX) Certificates in the Context of Transport Layer
Security (TLS)", RFC 6125, March 2011.

[USASCII] American National Standards Institute, "Coded Character
Set -- 7-bit American Standard Code for Information
Interchange", ANSI X3.4, 1986.

[W3C.REC-html401-19991224]
Raggett, D., Le Hors, A., and I. Jacobs, "HTML 4.01
Specification", World Wide Web Consortium
Recommendation REC-html401-19991224, December 1999,
.

[W3C.REC-xml-20081126]
Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E.,
and F. Yergeau, "Extensible Markup Language (XML) 1.0
(Fifth Edition)", World Wide Web Consortium
Recommendation REC-xml-20081126, November 2008,
.

Hardt Standards Track [Page 69]

RFC 6749: The OAuth 2.0 Authorization Framework 77

RFC 6749 OAuth 2.0 October 2012

12.2. Informative References

[OAuth-HTTP-MAC]
Hammer-Lahav, E., Ed., "HTTP Authentication: MAC Access
Authentication", Work in Progress, February 2012.

[OAuth-SAML2]
Campbell, B. and C. Mortimore, "SAML 2.0 Bearer Assertion
Profiles for OAuth 2.0", Work in Progress, September 2012.

[OAuth-THREATMODEL]
Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
Threat Model and Security Considerations", Work
in Progress, October 2012.

[OAuth-WRAP]
Hardt, D., Ed., Tom, A., Eaton, B., and Y. Goland, "OAuth
Web Resource Authorization Profiles", Work in Progress,
January 2010.

[RFC5849] Hammer-Lahav, E., "The OAuth 1.0 Protocol", RFC 5849,
April 2010.

[RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
Framework: Bearer Token Usage", RFC 6750, October 2012.

Hardt Standards Track [Page 70]

78 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

Appendix A. Augmented Backus-Naur Form (ABNF) Syntax

This section provides Augmented Backus-Naur Form (ABNF) syntax
descriptions for the elements defined in this specification using the
notation of [RFC5234]. The ABNF below is defined in terms of Unicode
code points [W3C.REC-xml-20081126]; these characters are typically
encoded in UTF-8. Elements are presented in the order first defined.

Some of the definitions that follow use the "URI-reference"
definition from [RFC3986].

Some of the definitions that follow use these common definitions:

VSCHAR = %x20-7E
NQCHAR = %x21 / %x23-5B / %x5D-7E
NQSCHAR = %x20-21 / %x23-5B / %x5D-7E
UNICODECHARNOCRLF = %x09 /%x20-7E / %x80-D7FF /

%xE000-FFFD / %x10000-10FFFF

(The UNICODECHARNOCRLF definition is based upon the Char definition
in Section 2.2 of [W3C.REC-xml-20081126], but omitting the Carriage
Return and Linefeed characters.)

A.1. "client_id" Syntax

The "client_id" element is defined in Section 2.3.1:

client-id = *VSCHAR

A.2. "client_secret" Syntax

The "client_secret" element is defined in Section 2.3.1:

client-secret = *VSCHAR

A.3. "response_type" Syntax

The "response_type" element is defined in Sections 3.1.1 and 8.4:

response-type = response-name *(SP response-name)
response-name = 1*response-char
response-char = "_" / DIGIT / ALPHA

Hardt Standards Track [Page 71]

RFC 6749: The OAuth 2.0 Authorization Framework 79

RFC 6749 OAuth 2.0 October 2012

A.4. "scope" Syntax

The "scope" element is defined in Section 3.3:

scope = scope-token *(SP scope-token)
scope-token = 1*NQCHAR

A.5. "state" Syntax

The "state" element is defined in Sections 4.1.1, 4.1.2, 4.1.2.1,
4.2.1, 4.2.2, and 4.2.2.1:

state = 1*VSCHAR

A.6. "redirect_uri" Syntax

The "redirect_uri" element is defined in Sections 4.1.1, 4.1.3,
and 4.2.1:

redirect-uri = URI-reference

A.7. "error" Syntax

The "error" element is defined in Sections 4.1.2.1, 4.2.2.1, 5.2,
7.2, and 8.5:

error = 1*NQSCHAR

A.8. "error_description" Syntax

The "error_description" element is defined in Sections 4.1.2.1,
4.2.2.1, 5.2, and 7.2:

error-description = 1*NQSCHAR

A.9. "error_uri" Syntax

The "error_uri" element is defined in Sections 4.1.2.1, 4.2.2.1, 5.2,
and 7.2:

error-uri = URI-reference

Hardt Standards Track [Page 72]

80 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

A.10. "grant_type" Syntax

The "grant_type" element is defined in Sections 4.1.3, 4.3.2, 4.4.2,
4.5, and 6:

grant-type = grant-name / URI-reference
grant-name = 1*name-char
name-char = "-" / "." / "_" / DIGIT / ALPHA

A.11. "code" Syntax

The "code" element is defined in Section 4.1.3:

code = 1*VSCHAR

A.12. "access_token" Syntax

The "access_token" element is defined in Sections 4.2.2 and 5.1:

access-token = 1*VSCHAR

A.13. "token_type" Syntax

The "token_type" element is defined in Sections 4.2.2, 5.1, and 8.1:

token-type = type-name / URI-reference
type-name = 1*name-char
name-char = "-" / "." / "_" / DIGIT / ALPHA

A.14. "expires_in" Syntax

The "expires_in" element is defined in Sections 4.2.2 and 5.1:

expires-in = 1*DIGIT

A.15. "username" Syntax

The "username" element is defined in Section 4.3.2:

username = *UNICODECHARNOCRLF

A.16. "password" Syntax

The "password" element is defined in Section 4.3.2:

password = *UNICODECHARNOCRLF

Hardt Standards Track [Page 73]

RFC 6749: The OAuth 2.0 Authorization Framework 81

RFC 6749 OAuth 2.0 October 2012

A.17. "refresh_token" Syntax

The "refresh_token" element is defined in Sections 5.1 and 6:

refresh-token = 1*VSCHAR

A.18. Endpoint Parameter Syntax

The syntax for new endpoint parameters is defined in Section 8.2:

param-name = 1*name-char
name-char = "-" / "." / "_" / DIGIT / ALPHA

Appendix B. Use of application/x-www-form-urlencoded Media Type

At the time of publication of this specification, the
"application/x-www-form-urlencoded" media type was defined in
Section 17.13.4 of [W3C.REC-html401-19991224] but not registered in
the IANA MIME Media Types registry
(). Furthermore, that
definition is incomplete, as it does not consider non-US-ASCII
characters.

To address this shortcoming when generating payloads using this media
type, names and values MUST be encoded using the UTF-8 character
encoding scheme [RFC3629] first; the resulting octet sequence then
needs to be further encoded using the escaping rules defined in
[W3C.REC-html401-19991224].

When parsing data from a payload using this media type, the names and
values resulting from reversing the name/value encoding consequently
need to be treated as octet sequences, to be decoded using the UTF-8
character encoding scheme.

For example, the value consisting of the six Unicode code points
(1) U+0020 (SPACE), (2) U+0025 (PERCENT SIGN),
(3) U+0026 (AMPERSAND), (4) U+002B (PLUS SIGN),
(5) U+00A3 (POUND SIGN), and (6) U+20AC (EURO SIGN) would be encoded
into the octet sequence below (using hexadecimal notation):

20 25 26 2B C2 A3 E2 82 AC

and then represented in the payload as:

+%25%26%2B%C2%A3%E2%82%AC

Hardt Standards Track [Page 74]

82 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749 OAuth 2.0 October 2012

Appendix C. Acknowledgements

The initial OAuth 2.0 protocol specification was edited by David
Recordon, based on two previous publications: the OAuth 1.0 community
specification [RFC5849], and OAuth WRAP (OAuth Web Resource
Authorization Profiles) [OAuth-WRAP]. Eran Hammer then edited many
of the intermediate drafts that evolved into this RFC. The Security
Considerations section was drafted by Torsten Lodderstedt, Mark
McGloin, Phil Hunt, Anthony Nadalin, and John Bradley. The section
on use of the "application/x-www-form-urlencoded" media type was
drafted by Julian Reschke. The ABNF section was drafted by Michael
B. Jones.

The OAuth 1.0 community specification was edited by Eran Hammer and
authored by Mark Atwood, Dirk Balfanz, Darren Bounds, Richard M.
Conlan, Blaine Cook, Leah Culver, Breno de Medeiros, Brian Eaton,
Kellan Elliott-McCrea, Larry Halff, Eran Hammer, Ben Laurie, Chris
Messina, John Panzer, Sam Quigley, David Recordon, Eran Sandler,
Jonathan Sergent, Todd Sieling, Brian Slesinsky, and Andy Smith.

The OAuth WRAP specification was edited by Dick Hardt and authored by
Brian Eaton, Yaron Y. Goland, Dick Hardt, and Allen Tom.

This specification is the work of the OAuth Working Group, which
includes dozens of active and dedicated participants. In particular,
the following individuals contributed ideas, feedback, and wording
that shaped and formed the final specification:

Michael Adams, Amanda Anganes, Andrew Arnott, Dirk Balfanz, Aiden
Bell, John Bradley, Marcos Caceres, Brian Campbell, Scott Cantor,
Blaine Cook, Roger Crew, Leah Culver, Bill de hOra, Andre DeMarre,
Brian Eaton, Wesley Eddy, Wolter Eldering, Brian Ellin, Igor
Faynberg, George Fletcher, Tim Freeman, Luca Frosini, Evan Gilbert,
Yaron Y. Goland, Brent Goldman, Kristoffer Gronowski, Eran Hammer,
Dick Hardt, Justin Hart, Craig Heath, Phil Hunt, Michael B. Jones,
Terry Jones, John Kemp, Mark Kent, Raffi Krikorian, Chasen Le Hara,
Rasmus Lerdorf, Torsten Lodderstedt, Hui-Lan Lu, Casey Lucas, Paul
Madsen, Alastair Mair, Eve Maler, James Manger, Mark McGloin,
Laurence Miao, William Mills, Chuck Mortimore, Anthony Nadalin,
Julian Reschke, Justin Richer, Peter Saint-Andre, Nat Sakimura, Rob
Sayre, Marius Scurtescu, Naitik Shah, Luke Shepard, Vlad Skvortsov,
Justin Smith, Haibin Song, Niv Steingarten, Christian Stuebner,
Jeremy Suriel, Paul Tarjan, Christopher Thomas, Henry S. Thompson,
Allen Tom, Franklin Tse, Nick Walker, Shane Weeden, and Skylar
Woodward.

Hardt Standards Track [Page 75]

RFC 6749: The OAuth 2.0 Authorization Framework 83

RFC 6749 OAuth 2.0 October 2012

This document was produced under the chairmanship of Blaine Cook,
Peter Saint-Andre, Hannes Tschofenig, Barry Leiba, and Derek Atkins.
The area directors included Lisa Dusseault, Peter Saint-Andre, and
Stephen Farrell.

Author's Address

Dick Hardt (editor)
Microsoft

EMail: dick.hardt@gmail.com
URI: http://dickhardt.org/

Hardt Standards Track [Page 76]

84 RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6749: The OAuth 2.0 Authorization Framework 85

86 RFC 6749: The OAuth 2.0 Authorization Framework

Chapter 2

RFC 6750: OAuth 2.0 Bearer
Tokens

Access token usage is defined in RFC 6750, although the
format of access tokens isn't defined here. This spec
defines "Bearer Tokens", which just means that it's a type
of token that can be used by whoever has the token with
no additional information. The particular format access
tokens take (random strings, JWTs, etc) is not relevant to
OAuth clients so isn't included in this spec. Only the
Authorization Server and Resource Server need to
coordinate on access token formats, so that is left up to the
particular implementation or a future spec.

Bearer tokens were a major point of contention in the
early days of OAuth. Some people wanted the simplicity of
bearer tokens, others wanted tokens that required some
sort of cryptographic binding with the client. The result
was that access tokens were taken out of the core spec
entirely rather than coming to a compromise.

While today most deployed systems use bearer tokens,
there is still a need for some sort of cryptographic token
type that would prevent attackers from being able to use
access tokens if stolen. There are several proposed new
ways to accomplish this, although none are formally
recognized as a standard, and this is a space where
continuing work is happening within the OAuth group.

RFC 6750: OAuth 2.0 Bearer Tokens 87

88 RFC 6750: OAuth 2.0 Bearer Tokens

Internet Engineering Task Force (IETF) M. Jones
Request for Comments: 6750 Microsoft
Category: Standards Track D. Hardt
ISSN: 2070-1721 Independent

October 2012

The OAuth 2.0 Authorization Framework: Bearer Token Usage

Abstract

This specification describes how to use bearer tokens in HTTP
requests to access OAuth 2.0 protected resources. Any party in
possession of a bearer token (a "bearer") can use it to get access to
the associated resources (without demonstrating possession of a
cryptographic key). To prevent misuse, bearer tokens need to be
protected from disclosure in storage and in transport.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.

Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc6750.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Jones & Hardt Standards Track [Page 1]

RFC 6750: OAuth 2.0 Bearer Tokens 89

RFC 6750 OAuth 2.0 Bearer Token Usage October 2012

Table of Contents

1. Introduction ..2
1.1. Notational Conventions3
1.2. Terminology ..3
1.3. Overview ...3

2. Authenticated Requests ..4
2.1. Authorization Request Header Field5
2.2. Form-Encoded Body Parameter5
2.3. URI Query Parameter ..6

3. The WWW-Authenticate Response Header Field7
3.1. Error Codes ..9

4. Example Access Token Response10
5. Security Considerations ..10

5.1. Security Threats ..10
5.2. Threat Mitigation ...11
5.3. Summary of Recommendations13

6. IANA Considerations ..14
6.1. OAuth Access Token Type Registration14

6.1.1. The "Bearer" OAuth Access Token Type14
6.2. OAuth Extensions Error Registration14

6.2.1. The "invalid_request" Error Value14
6.2.2. The "invalid_token" Error Value15
6.2.3. The "insufficient_scope" Error Value15

7. References ...15
7.1. Normative References15
7.2. Informative References17

Appendix A. Acknowledgements18

1. Introduction

OAuth enables clients to access protected resources by obtaining an
access token, which is defined in "The OAuth 2.0 Authorization
Framework" [RFC6749] as "a string representing an access
authorization issued to the client", rather than using the resource
owner's credentials directly.

Tokens are issued to clients by an authorization server with the
approval of the resource owner. The client uses the access token to
access the protected resources hosted by the resource server. This
specification describes how to make protected resource requests when
the OAuth access token is a bearer token.

This specification defines the use of bearer tokens over HTTP/1.1
[RFC2616] using Transport Layer Security (TLS) [RFC5246] to access
protected resources. TLS is mandatory to implement and use with this
specification; other specifications may extend this specification for
use with other protocols. While designed for use with access tokens

Jones & Hardt Standards Track [Page 2]

90 RFC 6750: OAuth 2.0 Bearer Tokens

RFC 6750 OAuth 2.0 Bearer Token Usage October 2012

resulting from OAuth 2.0 authorization [RFC6749] flows to access
OAuth protected resources, this specification actually defines a
general HTTP authorization method that can be used with bearer tokens
from any source to access any resources protected by those bearer
tokens. The Bearer authentication scheme is intended primarily for
server authentication using the WWW-Authenticate and Authorization
HTTP headers but does not preclude its use for proxy authentication.

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in "Key words for use in
RFCs to Indicate Requirement Levels" [RFC2119].

This document uses the Augmented Backus-Naur Form (ABNF) notation of
[RFC5234]. Additionally, the following rules are included from
HTTP/1.1 [RFC2617]: auth-param and auth-scheme; and from "Uniform
Resource Identifier (URI): Generic Syntax" [RFC3986]: URI-reference.

Unless otherwise noted, all the protocol parameter names and values
are case sensitive.

1.2. Terminology

Bearer Token
A security token with the property that any party in possession of
the token (a "bearer") can use the token in any way that any other
party in possession of it can. Using a bearer token does not
require a bearer to prove possession of cryptographic key material
(proof-of-possession).

All other terms are as defined in "The OAuth 2.0 Authorization
Framework" [RFC6749].

1.3. Overview

OAuth provides a method for clients to access a protected resource on
behalf of a resource owner. In the general case, before a client can
access a protected resource, it must first obtain an authorization
grant from the resource owner and then exchange the authorization
grant for an access token. The access token represents the grant's
scope, duration, and other attributes granted by the authorization
grant. The client accesses the protected resource by presenting the
access token to the resource server. In some cases, a client can
directly present its own credentials to an authorization server to
obtain an access token without having to first obtain an
authorization grant from a resource owner.

Jones & Hardt Standards Track [Page 3]

RFC 6750: OAuth 2.0 Bearer Tokens 91

RFC 6750 OAuth 2.0 Bearer Token Usage October 2012

The access token provides an abstraction, replacing different
authorization constructs (e.g., username and password, assertion) for
a single token understood by the resource server. This abstraction
enables issuing access tokens valid for a short time period, as well
as removing the resource server's need to understand a wide range of
authentication schemes.

+--------+ +---------------+
	--(A)- Authorization Request ->	Resource
		Owner
	<-(B)-- Authorization Grant ---	
	+---------------+	
	+---------------+	
	--(C)-- Authorization Grant -->	Authorization
Client		Server
	<-(D)----- Access Token -------	
	+---------------+	
	+---------------+	
	--(E)----- Access Token ------>	Resource
		Server
	<-(F)--- Protected Resource ---	
+--------+ +---------------+

Figure 1: Abstract Protocol Flow

The abstract OAuth 2.0 flow illustrated in Figure 1 describes the
interaction between the client, resource owner, authorization server,
and resource server (described in [RFC6749]). The following two
steps are specified within this document:

(E) The client requests the protected resource from the resource
server and authenticates by presenting the access token.

(F) The resource server validates the access token, and if valid,
serves the request.

This document also imposes semantic requirements upon the access
token returned in step (D).

2. Authenticated Requests

This section defines three methods of sending bearer access tokens in
resource requests to resource servers. Clients MUST NOT use more
than one method to transmit the token in each request.

Jones & Hardt Standards Track [Page 4]

92 RFC 6750: OAuth 2.0 Bearer Tokens

RFC 6750 OAuth 2.0 Bearer Token Usage October 2012

2.1. Authorization Request Header Field

When sending the access token in the "Authorization" request header
field defined by HTTP/1.1 [RFC2617], the client uses the "Bearer"
authentication scheme to transmit the access token.

For example:

GET /resource HTTP/1.1
Host: server.example.com
Authorization: Bearer mF_9.B5f-4.1JqM

The syntax of the "Authorization" header field for this scheme
follows the usage of the Basic scheme defined in Section 2 of
[RFC2617]. Note that, as with Basic, it does not conform to the
generic syntax defined in Section 1.2 of [RFC2617] but is compatible
with the general authentication framework being developed for
HTTP 1.1 [HTTP-AUTH], although it does not follow the preferred
practice outlined therein in order to reflect existing deployments.
The syntax for Bearer credentials is as follows:

b64token = 1*(ALPHA / DIGIT /
"-" / "." / "_" / "~" / "+" / "/") *"="

credentials = "Bearer" 1*SP b64token

Clients SHOULD make authenticated requests with a bearer token using
the "Authorization" request header field with the "Bearer" HTTP
authorization scheme. Resource servers MUST support this method.

2.2. Form-Encoded Body Parameter

When sending the access token in the HTTP request entity-body, the
client adds the access token to the request-body using the
"access_token" parameter. The client MUST NOT use this method unless
all of the following conditions are met:

o The HTTP request entity-header includes the "Content-Type" header
field set to "application/x-www-form-urlencoded".

o The entity-body follows the encoding requirements of the
"application/x-www-form-urlencoded" content-type as defined by
HTML 4.01 [W3C.REC-html401-19991224].

o The HTTP request entity-body is single-part.

Jones & Hardt Standards Track [Page 5]

RFC 6750: OAuth 2.0 Bearer Tokens 93

RFC 6750 OAuth 2.0 Bearer Token Usage October 2012

o The content to be encoded in the entity-body MUST consist entirely
of ASCII [USASCII] characters.

o The HTTP request method is one for which the request-body has
defined semantics. In particular, this means that the "GET"
method MUST NOT be used.

The entity-body MAY include other request-specific parameters, in
which case the "access_token" parameter MUST be properly separated
from the request-specific parameters using "&" character(s) (ASCII
code 38).

For example, the client makes the following HTTP request using
transport-layer security:

POST /resource HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded

access_token=mF_9.B5f-4.1JqM

The "application/x-www-form-urlencoded" method SHOULD NOT be used
except in application contexts where participating browsers do not
have access to the "Authorization" request header field. Resource
servers MAY support this method.

2.3. URI Query Parameter

When sending the access token in the HTTP request URI, the client
adds the access token to the request URI query component as defined
by "Uniform Resource Identifier (URI): Generic Syntax" [RFC3986],
using the "access_token" parameter.

For example, the client makes the following HTTP request using
transport-layer security:

GET /resource?access_token=mF_9.B5f-4.1JqM HTTP/1.1
Host: server.example.com

The HTTP request URI query can include other request-specific
parameters, in which case the "access_token" parameter MUST be
properly separated from the request-specific parameters using "&"
character(s) (ASCII code 38).

Jones & Hardt Standards Track [Page 6]

94 RFC 6750: OAuth 2.0 Bearer Tokens

RFC 6750 OAuth 2.0 Bearer Token Usage October 2012

For example:

https://server.example.com/resource?access_token=mF_9.B5f-4.1JqM&p=q

Clients using the URI Query Parameter method SHOULD also send a
Cache-Control header containing the "no-store" option. Server
success (2XX status) responses to these requests SHOULD contain a
Cache-Control header with the "private" option.

Because of the security weaknesses associated with the URI method
(see Section 5), including the high likelihood that the URL
containing the access token will be logged, it SHOULD NOT be used
unless it is impossible to transport the access token in the
"Authorization" request header field or the HTTP request entity-body.
Resource servers MAY support this method.

This method is included to document current use; its use is not
recommended, due to its security deficiencies (see Section 5) and
also because it uses a reserved query parameter name, which is
counter to URI namespace best practices, per "Architecture of the
World Wide Web, Volume One" [W3C.REC-webarch-20041215].

3. The WWW-Authenticate Response Header Field

If the protected resource request does not include authentication
credentials or does not contain an access token that enables access
to the protected resource, the resource server MUST include the HTTP
"WWW-Authenticate" response header field; it MAY include it in
response to other conditions as well. The "WWW-Authenticate" header
field uses the framework defined by HTTP/1.1 [RFC2617].

All challenges defined by this specification MUST use the auth-scheme
value "Bearer". This scheme MUST be followed by one or more
auth-param values. The auth-param attributes used or defined by this
specification are as follows. Other auth-param attributes MAY be
used as well.

A "realm" attribute MAY be included to indicate the scope of
protection in the manner described in HTTP/1.1 [RFC2617]. The
"realm" attribute MUST NOT appear more than once.

The "scope" attribute is defined in Section 3.3 of [RFC6749]. The
"scope" attribute is a space-delimited list of case-sensitive scope
values indicating the required scope of the access token for
accessing the requested resource. "scope" values are implementation
defined; there is no centralized registry for them; allowed values
are defined by the authorization server. The order of "scope" values
is not significant. In some cases, the "scope" value will be used

Jones & Hardt Standards Track [Page 7]

RFC 6750: OAuth 2.0 Bearer Tokens 95

RFC 6750 OAuth 2.0 Bearer Token Usage October 2012

when requesting a new access token with sufficient scope of access to
utilize the protected resource. Use of the "scope" attribute is
OPTIONAL. The "scope" attribute MUST NOT appear more than once. The
"scope" value is intended for programmatic use and is not meant to be
displayed to end-users.

Two example scope values follow; these are taken from the OpenID
Connect [OpenID.Messages] and the Open Authentication Technology
Committee (OATC) Online Multimedia Authorization Protocol [OMAP]
OAuth 2.0 use cases, respectively:

scope="openid profile email"
scope="urn:example:channel=HBO&urn:example:rating=G,PG-13"

If the protected resource request included an access token and failed
authentication, the resource server SHOULD include the "error"
attribute to provide the client with the reason why the access
request was declined. The parameter value is described in
Section 3.1. In addition, the resource server MAY include the
"error_description" attribute to provide developers a human-readable
explanation that is not meant to be displayed to end-users. It also
MAY include the "error_uri" attribute with an absolute URI
identifying a human-readable web page explaining the error. The
"error", "error_description", and "error_uri" attributes MUST NOT
appear more than once.

Values for the "scope" attribute (specified in Appendix A.4 of
[RFC6749]) MUST NOT include characters outside the set %x21 / %x23-5B
/ %x5D-7E for representing scope values and %x20 for delimiters
between scope values. Values for the "error" and "error_description"
attributes (specified in Appendixes A.7 and A.8 of [RFC6749]) MUST
NOT include characters outside the set %x20-21 / %x23-5B / %x5D-7E.
Values for the "error_uri" attribute (specified in Appendix A.9 of
[RFC6749]) MUST conform to the URI-reference syntax and thus MUST NOT
include characters outside the set %x21 / %x23-5B / %x5D-7E.

For example, in response to a protected resource request without
authentication:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer realm="example"

Jones & Hardt Standards Track [Page 8]

96 RFC 6750: OAuth 2.0 Bearer Tokens

RFC 6750 OAuth 2.0 Bearer Token Usage October 2012

And in response to a protected resource request with an
authentication attempt using an expired access token:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer realm="example",

error="invalid_token",
error_description="The access token expired"

3.1. Error Codes

When a request fails, the resource server responds using the
appropriate HTTP status code (typically, 400, 401, 403, or 405) and
includes one of the following error codes in the response:

invalid_request
The request is missing a required parameter, includes an
unsupported parameter or parameter value, repeats the same
parameter, uses more than one method for including an access
token, or is otherwise malformed. The resource server SHOULD
respond with the HTTP 400 (Bad Request) status code.

invalid_token
The access token provided is expired, revoked, malformed, or
invalid for other reasons. The resource SHOULD respond with
the HTTP 401 (Unauthorized) status code. The client MAY
request a new access token and retry the protected resource
request.

insufficient_scope
The request requires higher privileges than provided by the
access token. The resource server SHOULD respond with the HTTP
403 (Forbidden) status code and MAY include the "scope"
attribute with the scope necessary to access the protected
resource.

If the request lacks any authentication information (e.g., the client
was unaware that authentication is necessary or attempted using an
unsupported authentication method), the resource server SHOULD NOT
include an error code or other error information.

For example:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer realm="example"

Jones & Hardt Standards Track [Page 9]

RFC 6750: OAuth 2.0 Bearer Tokens 97

RFC 6750 OAuth 2.0 Bearer Token Usage October 2012

4. Example Access Token Response

Typically, a bearer token is returned to the client as part of an
OAuth 2.0 [RFC6749] access token response. An example of such a
response is:

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache

{
"access_token":"mF_9.B5f-4.1JqM",
"token_type":"Bearer",
"expires_in":3600,
"refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA"

}

5. Security Considerations

This section describes the relevant security threats regarding token
handling when using bearer tokens and describes how to mitigate these
threats.

5.1. Security Threats

The following list presents several common threats against protocols
utilizing some form of tokens. This list of threats is based on NIST
Special Publication 800-63 [NIST800-63]. Since this document builds
on the OAuth 2.0 Authorization specification [RFC6749], we exclude a
discussion of threats that are described there or in related
documents.

Token manufacture/modification: An attacker may generate a bogus
token or modify the token contents (such as the authentication or
attribute statements) of an existing token, causing the resource
server to grant inappropriate access to the client. For example,
an attacker may modify the token to extend the validity period; a
malicious client may modify the assertion to gain access to
information that they should not be able to view.

Token disclosure: Tokens may contain authentication and attribute
statements that include sensitive information.

Jones & Hardt Standards Track [Page 10]

98 RFC 6750: OAuth 2.0 Bearer Tokens

RFC 6750 OAuth 2.0 Bearer Token Usage October 2012

Token redirect: An attacker uses a token generated for consumption
by one resource server to gain access to a different resource
server that mistakenly believes the token to be for it.

Token replay: An attacker attempts to use a token that has already
been used with that resource server in the past.

5.2. Threat Mitigation

A large range of threats can be mitigated by protecting the contents
of the token by using a digital signature or a Message Authentication
Code (MAC). Alternatively, a bearer token can contain a reference to
authorization information, rather than encoding the information
directly. Such references MUST be infeasible for an attacker to
guess; using a reference may require an extra interaction between a
server and the token issuer to resolve the reference to the
authorization information. The mechanics of such an interaction are
not defined by this specification.

This document does not specify the encoding or the contents of the
token; hence, detailed recommendations about the means of
guaranteeing token integrity protection are outside the scope of this
document. The token integrity protection MUST be sufficient to
prevent the token from being modified.

To deal with token redirect, it is important for the authorization
server to include the identity of the intended recipients (the
audience), typically a single resource server (or a list of resource
servers), in the token. Restricting the use of the token to a
specific scope is also RECOMMENDED.

The authorization server MUST implement TLS. Which version(s) ought
to be implemented will vary over time and will depend on the
widespread deployment and known security vulnerabilities at the time
of implementation. At the time of this writing, TLS version 1.2
[RFC5246] is the most recent version, but it has very limited actual
deployment and might not be readily available in implementation
toolkits. TLS version 1.0 [RFC2246] is the most widely deployed
version and will give the broadest interoperability.

To protect against token disclosure, confidentiality protection MUST
be applied using TLS [RFC5246] with a ciphersuite that provides
confidentiality and integrity protection. This requires that the
communication interaction between the client and the authorization
server, as well as the interaction between the client and the
resource server, utilize confidentiality and integrity protection.
Since TLS is mandatory to implement and to use with this
specification, it is the preferred approach for preventing token

Jones & Hardt Standards Track [Page 11]

RFC 6750: OAuth 2.0 Bearer Tokens 99

RFC 6750 OAuth 2.0 Bearer Token Usage October 2012

disclosure via the communication channel. For those cases where the
client is prevented from observing the contents of the token, token
encryption MUST be applied in addition to the usage of TLS
protection. As a further defense against token disclosure, the
client MUST validate the TLS certificate chain when making requests
to protected resources, including checking the Certificate Revocation
List (CRL) [RFC5280].

Cookies are typically transmitted in the clear. Thus, any
information contained in them is at risk of disclosure. Therefore,
bearer tokens MUST NOT be stored in cookies that can be sent in the
clear. See "HTTP State Management Mechanism" [RFC6265] for security
considerations about cookies.

In some deployments, including those utilizing load balancers, the
TLS connection to the resource server terminates prior to the actual
server that provides the resource. This could leave the token
unprotected between the front-end server where the TLS connection
terminates and the back-end server that provides the resource. In
such deployments, sufficient measures MUST be employed to ensure
confidentiality of the token between the front-end and back-end
servers; encryption of the token is one such possible measure.

To deal with token capture and replay, the following recommendations
are made: First, the lifetime of the token MUST be limited; one means
of achieving this is by putting a validity time field inside the
protected part of the token. Note that using short-lived (one hour
or less) tokens reduces the impact of them being leaked. Second,
confidentiality protection of the exchanges between the client and
the authorization server and between the client and the resource
server MUST be applied. As a consequence, no eavesdropper along the
communication path is able to observe the token exchange.
Consequently, such an on-path adversary cannot replay the token.
Furthermore, when presenting the token to a resource server, the
client MUST verify the identity of that resource server, as per
Section 3.1 of "HTTP Over TLS" [RFC2818]. Note that the client MUST
validate the TLS certificate chain when making these requests to
protected resources. Presenting the token to an unauthenticated and
unauthorized resource server or failing to validate the certificate
chain will allow adversaries to steal the token and gain unauthorized
access to protected resources.

Jones & Hardt Standards Track [Page 12]

100 RFC 6750: OAuth 2.0 Bearer Tokens

RFC 6750 OAuth 2.0 Bearer Token Usage October 2012

5.3. Summary of Recommendations

Safeguard bearer tokens: Client implementations MUST ensure that
bearer tokens are not leaked to unintended parties, as they will
be able to use them to gain access to protected resources. This
is the primary security consideration when using bearer tokens and
underlies all the more specific recommendations that follow.

Validate TLS certificate chains: The client MUST validate the TLS
certificate chain when making requests to protected resources.
Failing to do so may enable DNS hijacking attacks to steal the
token and gain unintended access.

Always use TLS (https): Clients MUST always use TLS [RFC5246]
(https) or equivalent transport security when making requests with
bearer tokens. Failing to do so exposes the token to numerous
attacks that could give attackers unintended access.

Don't store bearer tokens in cookies: Implementations MUST NOT store
bearer tokens within cookies that can be sent in the clear (which
is the default transmission mode for cookies). Implementations
that do store bearer tokens in cookies MUST take precautions
against cross-site request forgery.

Issue short-lived bearer tokens: Token servers SHOULD issue
short-lived (one hour or less) bearer tokens, particularly when
issuing tokens to clients that run within a web browser or other
environments where information leakage may occur. Using
short-lived bearer tokens can reduce the impact of them being
leaked.

Issue scoped bearer tokens: Token servers SHOULD issue bearer tokens
that contain an audience restriction, scoping their use to the
intended relying party or set of relying parties.

Don't pass bearer tokens in page URLs: Bearer tokens SHOULD NOT be
passed in page URLs (for example, as query string parameters).
Instead, bearer tokens SHOULD be passed in HTTP message headers or
message bodies for which confidentiality measures are taken.
Browsers, web servers, and other software may not adequately
secure URLs in the browser history, web server logs, and other
data structures. If bearer tokens are passed in page URLs,
attackers might be able to steal them from the history data, logs,
or other unsecured locations.

Jones & Hardt Standards Track [Page 13]

RFC 6750: OAuth 2.0 Bearer Tokens 101

RFC 6750 OAuth 2.0 Bearer Token Usage October 2012

6. IANA Considerations

6.1. OAuth Access Token Type Registration

This specification registers the following access token type in the
OAuth Access Token Types registry defined in [RFC6749].

6.1.1. The "Bearer" OAuth Access Token Type

Type name:
Bearer

Additional Token Endpoint Response Parameters:
(none)

HTTP Authentication Scheme(s):
Bearer

Change controller:
IETF

Specification document(s):
RFC 6750

6.2. OAuth Extensions Error Registration

This specification registers the following error values in the OAuth
Extensions Error registry defined in [RFC6749].

6.2.1. The "invalid_request" Error Value

Error name:
invalid_request

Error usage location:
Resource access error response

Related protocol extension:
Bearer access token type

Change controller:
IETF

Specification document(s):
RFC 6750

Jones & Hardt Standards Track [Page 14]

102 RFC 6750: OAuth 2.0 Bearer Tokens

RFC 6750 OAuth 2.0 Bearer Token Usage October 2012

6.2.2. The "invalid_token" Error Value

Error name:
invalid_token

Error usage location:
Resource access error response

Related protocol extension:
Bearer access token type

Change controller:
IETF

Specification document(s):
RFC 6750

6.2.3. The "insufficient_scope" Error Value

Error name:
insufficient_scope

Error usage location:
Resource access error response

Related protocol extension:
Bearer access token type

Change controller:
IETF

Specification document(s):
RFC 6750

7. References

7.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

Jones & Hardt Standards Track [Page 15]

RFC 6750: OAuth 2.0 Bearer Tokens 103

RFC 6750 OAuth 2.0 Bearer Token Usage October 2012

[RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence,
S., Leach, P., Luotonen, A., and L. Stewart, "HTTP
Authentication: Basic and Digest Access Authentication",
RFC 2617, June 1999.

[RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", STD 66,
RFC 3986, January 2005.

[RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
Specifications: ABNF", STD 68, RFC 5234, January 2008.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer
Security (TLS) Protocol Version 1.2", RFC 5246,
August 2008.

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, "Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation
List (CRL) Profile", RFC 5280, May 2008.

[RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
April 2011.

[RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, October 2012.

[USASCII] American National Standards Institute, "Coded Character
Set -- 7-bit American Standard Code for Information
Interchange", ANSI X3.4, 1986.

[W3C.REC-html401-19991224]
Raggett, D., Le Hors, A., and I. Jacobs, "HTML 4.01
Specification", World Wide Web Consortium
Recommendation REC-html401-19991224, December 1999,
.

[W3C.REC-webarch-20041215]
Jacobs, I. and N. Walsh, "Architecture of the World Wide
Web, Volume One", World Wide Web Consortium
Recommendation REC-webarch-20041215, December 2004,
.

Jones & Hardt Standards Track [Page 16]

104 RFC 6750: OAuth 2.0 Bearer Tokens

RFC 6750 OAuth 2.0 Bearer Token Usage October 2012

7.2. Informative References

[HTTP-AUTH] Fielding, R., Ed., and J. Reschke, Ed., "Hypertext
Transfer Protocol (HTTP/1.1): Authentication", Work
in Progress, October 2012.

[NIST800-63] Burr, W., Dodson, D., Newton, E., Perlner, R., Polk, T.,
Gupta, S., and E. Nabbus, "NIST Special Publication
800-63-1, INFORMATION SECURITY", December 2011,
.

[OMAP] Huff, J., Schlacht, D., Nadalin, A., Simmons, J.,
Rosenberg, P., Madsen, P., Ace, T., Rickelton-Abdi, C.,
and B. Boyer, "Online Multimedia Authorization Protocol:
An Industry Standard for Authorized Access to Internet
Multimedia Resources", April 2012,
.

[OpenID.Messages]
Sakimura, N., Bradley, J., Jones, M., de Medeiros, B.,
Mortimore, C., and E. Jay, "OpenID Connect Messages
1.0", June 2012, .

Jones & Hardt Standards Track [Page 17]

RFC 6750: OAuth 2.0 Bearer Tokens 105

RFC 6750 OAuth 2.0 Bearer Token Usage October 2012

Appendix A. Acknowledgements

The following people contributed to preliminary versions of this
document: Blaine Cook (BT), Brian Eaton (Google), Yaron Y. Goland
(Microsoft), Brent Goldman (Facebook), Raffi Krikorian (Twitter),
Luke Shepard (Facebook), and Allen Tom (Yahoo!). The content and
concepts within are a product of the OAuth community, the Web
Resource Authorization Profiles (WRAP) community, and the OAuth
Working Group. David Recordon created a preliminary version of this
specification based upon an early draft of the specification that
evolved into OAuth 2.0 [RFC6749]. Michael B. Jones in turn created
the first version (00) of this specification using portions of
David's preliminary document and edited all subsequent versions.

The OAuth Working Group has dozens of very active contributors who
proposed ideas and wording for this document, including Michael
Adams, Amanda Anganes, Andrew Arnott, Derek Atkins, Dirk Balfanz,
John Bradley, Brian Campbell, Francisco Corella, Leah Culver, Bill de
hOra, Breno de Medeiros, Brian Ellin, Stephen Farrell, Igor Faynberg,
George Fletcher, Tim Freeman, Evan Gilbert, Yaron Y. Goland, Eran
Hammer, Thomas Hardjono, Dick Hardt, Justin Hart, Phil Hunt, John
Kemp, Chasen Le Hara, Barry Leiba, Amos Jeffries, Michael B. Jones,
Torsten Lodderstedt, Paul Madsen, Eve Maler, James Manger, Laurence
Miao, William J. Mills, Chuck Mortimore, Anthony Nadalin, Axel
Nennker, Mark Nottingham, David Recordon, Julian Reschke, Rob
Richards, Justin Richer, Peter Saint-Andre, Nat Sakimura, Rob Sayre,
Marius Scurtescu, Naitik Shah, Justin Smith, Christian Stuebner,
Jeremy Suriel, Doug Tangren, Paul Tarjan, Hannes Tschofenig, Franklin
Tse, Sean Turner, Paul Walker, Shane Weeden, Skylar Woodward, and
Zachary Zeltsan.

Authors' Addresses

Michael B. Jones
Microsoft

EMail: mbj@microsoft.com
URI: http://self-issued.info/

Dick Hardt
Independent

EMail: dick.hardt@gmail.com
URI: http://dickhardt.org/

Jones & Hardt Standards Track [Page 18]

106 RFC 6750: OAuth 2.0 Bearer Tokens

RFC 6750: OAuth 2.0 Bearer Tokens 107

108 RFC 6750: OAuth 2.0 Bearer Tokens

Chapter 3

RFC 7636: Proof Key for Code
Exchange (PKCE)

The Authorization Code flow traditionally relies on a pre-
established client secret for its security. Platforms such as
mobile apps and JavaScript apps have no ability to deploy
a client secret, so they would previously have been unable
to implement a secure Authorization Code flow.

PKCE is an extension to the Authorization Code flow that
adds a secure link between starting and completing the
flow so that clients can use it without a preconfigured
secret.

PKCE works by the app first generating a new secret each
time it starts the Authorization Code flow, and it sends a
hash of the secret in the initial authorization request. The
original secret is then required in order to exchange the
authorization code for an access token, ensuring that even
if an attacker can steal the authorization code, they would
be unable to use it.

At the time of publication, PKCE was recommended for
mobile apps, but it has proven to be useful even for
JavaScript apps, and now the latest Security Best Current
Practice recommends using it for all types of apps, even
apps with a client secret.

RFC 7636: Proof Key for Code Exchange (PKCE) 109

110 RFC 7636: Proof Key for Code Exchange (PKCE)

Internet Engineering Task Force (IETF) N. Sakimura, Ed.
Request for Comments: 7636 Nomura Research Institute
Category: Standards Track J. Bradley
ISSN: 2070-1721 Ping Identity

N. Agarwal
Google

September 2015

Proof Key for Code Exchange by OAuth Public Clients

Abstract

OAuth 2.0 public clients utilizing the Authorization Code Grant are
susceptible to the authorization code interception attack. This
specification describes the attack as well as a technique to mitigate
against the threat through the use of Proof Key for Code Exchange
(PKCE, pronounced "pixy").

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.

Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7636.

Copyright Notice

Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Sakimura, et al. Standards Track [Page 1]

RFC 7636: Proof Key for Code Exchange (PKCE) 111

RFC 7636 OAUTH PKCE September 2015

Table of Contents

1. Introduction ..3
1.1. Protocol Flow ..5

2. Notational Conventions ..6
3. Terminology ...7

3.1. Abbreviations ..7
4. Protocol ..8

4.1. Client Creates a Code Verifier8
4.2. Client Creates the Code Challenge8
4.3. Client Sends the Code Challenge with the

Authorization Request9
4.4. Server Returns the Code9

4.4.1. Error Response9
4.5. Client Sends the Authorization Code and the Code

Verifier to the Token Endpoint10
4.6. Server Verifies code_verifier before Returning the

Tokens ..10
5. Compatibility ..11
6. IANA Considerations ..11

6.1. OAuth Parameters Registry11
6.2. PKCE Code Challenge Method Registry11

6.2.1. Registration Template12
6.2.2. Initial Registry Contents13

7. Security Considerations ..13
7.1. Entropy of the code_verifier13
7.2. Protection against Eavesdroppers13
7.3. Salting the code_challenge14
7.4. OAuth Security Considerations14
7.5. TLS Security Considerations15

8. References ...15
8.1. Normative References15
8.2. Informative References16

Appendix A. Notes on Implementing Base64url Encoding without
Padding ...17

Appendix B. Example for the S256 code_challenge_method17
Acknowledgements ..19
Authors' Addresses ..20

Sakimura, et al. Standards Track [Page 2]

112 RFC 7636: Proof Key for Code Exchange (PKCE)

RFC 7636 OAUTH PKCE September 2015

1. Introduction

OAuth 2.0 [RFC6749] public clients are susceptible to the
authorization code interception attack.

In this attack, the attacker intercepts the authorization code
returned from the authorization endpoint within a communication path
not protected by Transport Layer Security (TLS), such as inter-
application communication within the client's operating system.

Once the attacker has gained access to the authorization code, it can
use it to obtain the access token.

Figure 1 shows the attack graphically. In step (1), the native
application running on the end device, such as a smartphone, issues
an OAuth 2.0 Authorization Request via the browser/operating system.
The Redirection Endpoint URI in this case typically uses a custom URI
scheme. Step (1) happens through a secure API that cannot be
intercepted, though it may potentially be observed in advanced attack
scenarios. The request then gets forwarded to the OAuth 2.0
authorization server in step (2). Because OAuth requires the use of
TLS, this communication is protected by TLS and cannot be
intercepted. The authorization server returns the authorization code
in step (3). In step (4), the Authorization Code is returned to the
requester via the Redirection Endpoint URI that was provided in step
(1).

Note that it is possible for a malicious app to register itself as a
handler for the custom scheme in addition to the legitimate OAuth 2.0
app. Once it does so, the malicious app is now able to intercept the
authorization code in step (4). This allows the attacker to request
and obtain an access token in steps (5) and (6), respectively.

Sakimura, et al. Standards Track [Page 3]

RFC 7636: Proof Key for Code Exchange (PKCE) 113

RFC 7636 OAUTH PKCE September 2015

+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+
| End Device (e.g., Smartphone) |
| |
| +-------------+ +----------+ | (6) Access Token +----------+
	Legitimate		Malicious	<--------------------	
	OAuth 2.0 App		App	-------------------->	
+-------------+ +----------+	(5) Authorization				
	^ ^	Grant			
	\				
	\ (4)				
(1)	\ Authz				
Authz	\ Code			Authz	
Request	\			Server	
	\				
	\				
v \					
+----------------------------+					
			(3) Authz Code		
	Operating System/	<--------------------			
	Browser	-------------------->			
			(2) Authz Request		
+----------------------------+	+----------+				
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+

Figure 1: Authorization Code Interception Attack

A number of pre-conditions need to hold for this attack to work:

1. The attacker manages to register a malicious application on the
client device and registers a custom URI scheme that is also used
by another application. The operating systems must allow a custom
URI scheme to be registered by multiple applications.

2. The OAuth 2.0 authorization code grant is used.

3. The attacker has access to the OAuth 2.0 [RFC6749] "client_id" and
"client_secret" (if provisioned). All OAuth 2.0 native app
client-instances use the same "client_id". Secrets provisioned in
client binary applications cannot be considered confidential.

4. Either one of the following condition is met:

4a. The attacker (via the installed application) is able to
observe only the responses from the authorization endpoint.
When "code_challenge_method" value is "plain", only this
attack is mitigated.

Sakimura, et al. Standards Track [Page 4]

114 RFC 7636: Proof Key for Code Exchange (PKCE)

RFC 7636 OAUTH PKCE September 2015

4b. A more sophisticated attack scenario allows the attacker to
observe requests (in addition to responses) to the
authorization endpoint. The attacker is, however, not able to
act as a man in the middle. This was caused by leaking http
log information in the OS. To mitigate this,
"code_challenge_method" value must be set either to "S256" or
a value defined by a cryptographically secure
"code_challenge_method" extension.

While this is a long list of pre-conditions, the described attack has
been observed in the wild and has to be considered in OAuth 2.0
deployments. While the OAuth 2.0 threat model (Section 4.4.1 of
[RFC6819]) describes mitigation techniques, they are, unfortunately,
not applicable since they rely on a per-client instance secret or a
per-client instance redirect URI.

To mitigate this attack, this extension utilizes a dynamically
created cryptographically random key called "code verifier". A
unique code verifier is created for every authorization request, and
its transformed value, called "code challenge", is sent to the
authorization server to obtain the authorization code. The
authorization code obtained is then sent to the token endpoint with
the "code verifier", and the server compares it with the previously
received request code so that it can perform the proof of possession
of the "code verifier" by the client. This works as the mitigation
since the attacker would not know this one-time key, since it is sent
over TLS and cannot be intercepted.

1.1. Protocol Flow

+-------------------+
| Authz Server |

+--------+ | +---------------+ |
	--(A)- Authorization Request ---->			
	+ t(code_verifier), t_m		Authorization	
			Endpoint	
	<-(B)---- Authorization Code -----			
		+---------------+		
Client				
		+---------------+		
	--(C)-- Access Token Request ---->			
	+ code_verifier		Token	
			Endpoint	
	<-(D)------ Access Token ---------			
+--------+ | +---------------+ |

+-------------------+

Figure 2: Abstract Protocol Flow

Sakimura, et al. Standards Track [Page 5]

RFC 7636: Proof Key for Code Exchange (PKCE) 115

RFC 7636 OAUTH PKCE September 2015

This specification adds additional parameters to the OAuth 2.0
Authorization and Access Token Requests, shown in abstract form in
Figure 2.

A. The client creates and records a secret named the "code_verifier"
and derives a transformed version "t(code_verifier)" (referred to
as the "code_challenge"), which is sent in the OAuth 2.0
Authorization Request along with the transformation method "t_m".

B. The Authorization Endpoint responds as usual but records
"t(code_verifier)" and the transformation method.

C. The client then sends the authorization code in the Access Token
Request as usual but includes the "code_verifier" secret generated
at (A).

D. The authorization server transforms "code_verifier" and compares
it to "t(code_verifier)" from (B). Access is denied if they are
not equal.

An attacker who intercepts the authorization code at (B) is unable to
redeem it for an access token, as they are not in possession of the
"code_verifier" secret.

2. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
"Key words for use in RFCs to Indicate Requirement Levels" [RFC2119].
If these words are used without being spelled in uppercase, then they
are to be interpreted with their natural language meanings.

This specification uses the Augmented Backus-Naur Form (ABNF)
notation of [RFC5234].

STRING denotes a sequence of zero or more ASCII [RFC20] characters.

OCTETS denotes a sequence of zero or more octets.

ASCII(STRING) denotes the octets of the ASCII [RFC20] representation
of STRING where STRING is a sequence of zero or more ASCII
characters.

BASE64URL-ENCODE(OCTETS) denotes the base64url encoding of OCTETS,
per Appendix A, producing a STRING.

Sakimura, et al. Standards Track [Page 6]

116 RFC 7636: Proof Key for Code Exchange (PKCE)

RFC 7636 OAUTH PKCE September 2015

BASE64URL-DECODE(STRING) denotes the base64url decoding of STRING,
per Appendix A, producing a sequence of octets.

SHA256(OCTETS) denotes a SHA2 256-bit hash [RFC6234] of OCTETS.

3. Terminology

In addition to the terms defined in OAuth 2.0 [RFC6749], this
specification defines the following terms:

code verifier
A cryptographically random string that is used to correlate the
authorization request to the token request.

code challenge
A challenge derived from the code verifier that is sent in the
authorization request, to be verified against later.

code challenge method
A method that was used to derive code challenge.

Base64url Encoding
Base64 encoding using the URL- and filename-safe character set
defined in Section 5 of [RFC4648], with all trailing '='
characters omitted (as permitted by Section 3.2 of [RFC4648]) and
without the inclusion of any line breaks, whitespace, or other
additional characters. (See Appendix A for notes on implementing
base64url encoding without padding.)

3.1. Abbreviations

ABNF Augmented Backus-Naur Form

Authz Authorization

PKCE Proof Key for Code Exchange

MITM Man-in-the-middle

MTI Mandatory To Implement

Sakimura, et al. Standards Track [Page 7]

RFC 7636: Proof Key for Code Exchange (PKCE) 117

RFC 7636 OAUTH PKCE September 2015

4. Protocol

4.1. Client Creates a Code Verifier

The client first creates a code verifier, "code_verifier", for each
OAuth 2.0 [RFC6749] Authorization Request, in the following manner:

code_verifier = high-entropy cryptographic random STRING using the
unreserved characters [A-Z] / [a-z] / [0-9] / "-" / "." / "_" / "~"
from Section 2.3 of [RFC3986], with a minimum length of 43 characters
and a maximum length of 128 characters.

ABNF for "code_verifier" is as follows.

code-verifier = 43*128unreserved
unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"
ALPHA = %x41-5A / %x61-7A
DIGIT = %x30-39

NOTE: The code verifier SHOULD have enough entropy to make it
impractical to guess the value. It is RECOMMENDED that the output of
a suitable random number generator be used to create a 32-octet
sequence. The octet sequence is then base64url-encoded to produce a
43-octet URL safe string to use as the code verifier.

4.2. Client Creates the Code Challenge

The client then creates a code challenge derived from the code
verifier by using one of the following transformations on the code
verifier:

plain
code_challenge = code_verifier

S256
code_challenge = BASE64URL-ENCODE(SHA256(ASCII(code_verifier)))

If the client is capable of using "S256", it MUST use "S256", as
"S256" is Mandatory To Implement (MTI) on the server. Clients are
permitted to use "plain" only if they cannot support "S256" for some
technical reason and know via out-of-band configuration that the
server supports "plain".

The plain transformation is for compatibility with existing
deployments and for constrained environments that can't use the S256
transformation.

Sakimura, et al. Standards Track [Page 8]

118 RFC 7636: Proof Key for Code Exchange (PKCE)

RFC 7636 OAUTH PKCE September 2015

ABNF for "code_challenge" is as follows.

code-challenge = 43*128unreserved
unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"
ALPHA = %x41-5A / %x61-7A
DIGIT = %x30-39

4.3. Client Sends the Code Challenge with the Authorization Request

The client sends the code challenge as part of the OAuth 2.0
Authorization Request (Section 4.1.1 of [RFC6749]) using the
following additional parameters:

code_challenge
REQUIRED. Code challenge.

code_challenge_method
OPTIONAL, defaults to "plain" if not present in the request. Code
verifier transformation method is "S256" or "plain".

4.4. Server Returns the Code

When the server issues the authorization code in the authorization
response, it MUST associate the "code_challenge" and
"code_challenge_method" values with the authorization code so it can
be verified later.

Typically, the "code_challenge" and "code_challenge_method" values
are stored in encrypted form in the "code" itself but could
alternatively be stored on the server associated with the code. The
server MUST NOT include the "code_challenge" value in client requests
in a form that other entities can extract.

The exact method that the server uses to associate the
"code_challenge" with the issued "code" is out of scope for this
specification.

4.4.1. Error Response

If the server requires Proof Key for Code Exchange (PKCE) by OAuth
public clients and the client does not send the "code_challenge" in
the request, the authorization endpoint MUST return the authorization
error response with the "error" value set to "invalid_request". The
"error_description" or the response of "error_uri" SHOULD explain the
nature of error, e.g., code challenge required.

Sakimura, et al. Standards Track [Page 9]

RFC 7636: Proof Key for Code Exchange (PKCE) 119

RFC 7636 OAUTH PKCE September 2015

If the server supporting PKCE does not support the requested
transformation, the authorization endpoint MUST return the
authorization error response with "error" value set to
"invalid_request". The "error_description" or the response of
"error_uri" SHOULD explain the nature of error, e.g., transform
algorithm not supported.

4.5. Client Sends the Authorization Code and the Code Verifier to the
Token Endpoint

Upon receipt of the Authorization Code, the client sends the Access
Token Request to the token endpoint. In addition to the parameters
defined in the OAuth 2.0 Access Token Request (Section 4.1.3 of
[RFC6749]), it sends the following parameter:

code_verifier
REQUIRED. Code verifier

The "code_challenge_method" is bound to the Authorization Code when
the Authorization Code is issued. That is the method that the token
endpoint MUST use to verify the "code_verifier".

4.6. Server Verifies code_verifier before Returning the Tokens

Upon receipt of the request at the token endpoint, the server
verifies it by calculating the code challenge from the received
"code_verifier" and comparing it with the previously associated
"code_challenge", after first transforming it according to the
"code_challenge_method" method specified by the client.

If the "code_challenge_method" from Section 4.3 was "S256", the
received "code_verifier" is hashed by SHA-256, base64url-encoded, and
then compared to the "code_challenge", i.e.:

BASE64URL-ENCODE(SHA256(ASCII(code_verifier))) == code_challenge

If the "code_challenge_method" from Section 4.3 was "plain", they are
compared directly, i.e.:

code_verifier == code_challenge.

If the values are equal, the token endpoint MUST continue processing
as normal (as defined by OAuth 2.0 [RFC6749]). If the values are not
equal, an error response indicating "invalid_grant" as described in
Section 5.2 of [RFC6749] MUST be returned.

Sakimura, et al. Standards Track [Page 10]

120 RFC 7636: Proof Key for Code Exchange (PKCE)

RFC 7636 OAUTH PKCE September 2015

5. Compatibility

Server implementations of this specification MAY accept OAuth2.0
clients that do not implement this extension. If the "code_verifier"
is not received from the client in the Authorization Request, servers
supporting backwards compatibility revert to the OAuth 2.0 [RFC6749]
protocol without this extension.

As the OAuth 2.0 [RFC6749] server responses are unchanged by this
specification, client implementations of this specification do not
need to know if the server has implemented this specification or not
and SHOULD send the additional parameters as defined in Section 4 to
all servers.

6. IANA Considerations

IANA has made the following registrations per this document.

6.1. OAuth Parameters Registry

This specification registers the following parameters in the IANA
"OAuth Parameters" registry defined in OAuth 2.0 [RFC6749].

o Parameter name: code_verifier
o Parameter usage location: token request
o Change controller: IESG
o Specification document(s): RFC 7636 (this document)

o Parameter name: code_challenge
o Parameter usage location: authorization request
o Change controller: IESG
o Specification document(s): RFC 7636 (this document)

o Parameter name: code_challenge_method
o Parameter usage location: authorization request
o Change controller: IESG
o Specification document(s): RFC 7636 (this document)

6.2. PKCE Code Challenge Method Registry

This specification establishes the "PKCE Code Challenge Methods"
registry. The new registry should be a sub-registry of the "OAuth
Parameters" registry.

Additional "code_challenge_method" types for use with the
authorization endpoint are registered using the Specification
Required policy [RFC5226], which includes review of the request by
one or more Designated Experts (DEs). The DEs will ensure that there

Sakimura, et al. Standards Track [Page 11]

RFC 7636: Proof Key for Code Exchange (PKCE) 121

RFC 7636 OAUTH PKCE September 2015

is at least a two-week review of the request on the oauth-ext-
review@ietf.org mailing list and that any discussion on that list
converges before they respond to the request. To allow for the
allocation of values prior to publication, the Designated Expert(s)
may approve registration once they are satisfied that an acceptable
specification will be published.

Registration requests and discussion on the oauth-ext-review@ietf.org
mailing list should use an appropriate subject, such as "Request for
PKCE code_challenge_method: example").

The Designated Expert(s) should consider the discussion on the
mailing list, as well as the overall security properties of the
challenge method when evaluating registration requests. New methods
should not disclose the value of the code_verifier in the request to
the Authorization endpoint. Denials should include an explanation
and, if applicable, suggestions as to how to make the request
successful.

6.2.1. Registration Template

Code Challenge Method Parameter Name:
The name requested (e.g., "example"). Because a core goal of this
specification is for the resulting representations to be compact,
it is RECOMMENDED that the name be short -- not to exceed 8
characters without a compelling reason to do so. This name is
case-sensitive. Names may not match other registered names in a
case-insensitive manner unless the Designated Expert(s) states
that there is a compelling reason to allow an exception in this
particular case.

Change Controller:
For Standards Track RFCs, state "IESG". For others, give the name
of the responsible party. Other details (e.g., postal address,
email address, and home page URI) may also be included.

Specification Document(s):
Reference to the document(s) that specifies the parameter,
preferably including URI(s) that can be used to retrieve copies of
the document(s). An indication of the relevant sections may also
be included but is not required.

Sakimura, et al. Standards Track [Page 12]

122 RFC 7636: Proof Key for Code Exchange (PKCE)

RFC 7636 OAUTH PKCE September 2015

6.2.2. Initial Registry Contents

Per this document, IANA has registered the Code Challenge Method
Parameter Names defined in Section 4.2 in this registry.

o Code Challenge Method Parameter Name: plain
o Change Controller: IESG
o Specification Document(s): Section 4.2 of RFC 7636 (this document)

o Code Challenge Method Parameter Name: S256
o Change Controller: IESG
o Specification Document(s): Section 4.2 of RFC 7636 (this document)

7. Security Considerations

7.1. Entropy of the code_verifier

The security model relies on the fact that the code verifier is not
learned or guessed by the attacker. It is vitally important to
adhere to this principle. As such, the code verifier has to be
created in such a manner that it is cryptographically random and has
high entropy that it is not practical for the attacker to guess.

The client SHOULD create a "code_verifier" with a minimum of 256 bits
of entropy. This can be done by having a suitable random number
generator create a 32-octet sequence. The octet sequence can then be
base64url-encoded to produce a 43-octet URL safe string to use as a
"code_challenge" that has the required entropy.

7.2. Protection against Eavesdroppers

Clients MUST NOT downgrade to "plain" after trying the "S256" method.
Servers that support PKCE are required to support "S256", and servers
that do not support PKCE will simply ignore the unknown
"code_verifier". Because of this, an error when "S256" is presented
can only mean that the server is faulty or that a MITM attacker is
trying a downgrade attack.

The "S256" method protects against eavesdroppers observing or
intercepting the "code_challenge", because the challenge cannot be
used without the verifier. With the "plain" method, there is a
chance that "code_challenge" will be observed by the attacker on the
device or in the http request. Since the code challenge is the same
as the code verifier in this case, the "plain" method does not
protect against the eavesdropping of the initial request.

The use of "S256" protects against disclosure of the "code_verifier"
value to an attacker.

Sakimura, et al. Standards Track [Page 13]

RFC 7636: Proof Key for Code Exchange (PKCE) 123

RFC 7636 OAUTH PKCE September 2015

Because of this, "plain" SHOULD NOT be used and exists only for
compatibility with deployed implementations where the request path is
already protected. The "plain" method SHOULD NOT be used in new
implementations, unless they cannot support "S256" for some technical
reason.

The "S256" code challenge method or other cryptographically secure
code challenge method extension SHOULD be used. The "plain" code
challenge method relies on the operating system and transport
security not to disclose the request to an attacker.

If the code challenge method is "plain" and the code challenge is to
be returned inside authorization "code" to achieve a stateless
server, it MUST be encrypted in such a manner that only the server
can decrypt and extract it.

7.3. Salting the code_challenge

To reduce implementation complexity, salting is not used in the
production of the code challenge, as the code verifier contains
sufficient entropy to prevent brute-force attacks. Concatenating a
publicly known value to a code verifier (containing 256 bits of
entropy) and then hashing it with SHA256 to produce a code challenge
would not increase the number of attempts necessary to brute force a
valid value for code verifier.

While the "S256" transformation is like hashing a password, there are
important differences. Passwords tend to be relatively low-entropy
words that can be hashed offline and the hash looked up in a
dictionary. By concatenating a unique though public value to each
password prior to hashing, the dictionary space that an attacker
needs to search is greatly expanded.

Modern graphics processors now allow attackers to calculate hashes in
real time faster than they could be looked up from a disk. This
eliminates the value of the salt in increasing the complexity of a
brute-force attack for even low-entropy passwords.

7.4. OAuth Security Considerations

All the OAuth security analysis presented in [RFC6819] applies, so
readers SHOULD carefully follow it.

Sakimura, et al. Standards Track [Page 14]

124 RFC 7636: Proof Key for Code Exchange (PKCE)

RFC 7636 OAUTH PKCE September 2015

7.5. TLS Security Considerations

Current security considerations can be found in "Recommendations for
Secure Use of Transport Layer Security (TLS) and Datagram Transport
Layer Security (DTLS)" [BCP195]. This supersedes the TLS version
recommendations in OAuth 2.0 [RFC6749].

8. References

8.1. Normative References

[BCP195] Sheffer, Y., Holz, R., and P. Saint-Andre,
"Recommendations for Secure Use of Transport Layer
Security (TLS) and Datagram Transport Layer Security
(DTLS)", BCP 195, RFC 7525, May 2015,
.

[RFC20] Cerf, V., "ASCII format for network interchange", STD 80,
RFC 20, DOI 10.17487/RFC0020, October 1969,
.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
.

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", STD 66, RFC
3986, DOI 10.17487/RFC3986, January 2005,
.

[RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
.

[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", BCP 26, RFC 5226,
DOI 10.17487/RFC5226, May 2008,
.

[RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
Specifications: ABNF", STD 68, RFC 5234,
DOI 10.17487/RFC5234, January 2008,
.

Sakimura, et al. Standards Track [Page 15]

RFC 7636: Proof Key for Code Exchange (PKCE) 125

RFC 7636 OAUTH PKCE September 2015

[RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
(SHA and SHA-based HMAC and HKDF)", RFC 6234,
DOI 10.17487/RFC6234, May 2011,
.

[RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,
.

8.2. Informative References

[RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
Threat Model and Security Considerations", RFC 6819,
DOI 10.17487/RFC6819, January 2013,
.

Sakimura, et al. Standards Track [Page 16]

126 RFC 7636: Proof Key for Code Exchange (PKCE)

RFC 7636 OAUTH PKCE September 2015

Appendix A. Notes on Implementing Base64url Encoding without Padding

This appendix describes how to implement a base64url-encoding
function without padding, based upon the standard base64-encoding
function that uses padding.

To be concrete, example C# code implementing these functions is shown
below. Similar code could be used in other languages.

static string base64urlencode(byte [] arg)
{
string s = Convert.ToBase64String(arg); // Regular base64 encoder
s = s.Split('=')[0]; // Remove any trailing '='s
s = s.Replace('+', '-'); // 62nd char of encoding
s = s.Replace('/', '_'); // 63rd char of encoding
return s;

}

An example correspondence between unencoded and encoded values
follows. The octet sequence below encodes into the string below,
which when decoded, reproduces the octet sequence.

3 236 255 224 193

A-z_4ME

Appendix B. Example for the S256 code_challenge_method

The client uses output of a suitable random number generator to
create a 32-octet sequence. The octets representing the value in
this example (using JSON array notation) are:

[116, 24, 223, 180, 151, 153, 224, 37, 79, 250, 96, 125, 216, 173,
187, 186, 22, 212, 37, 77, 105, 214, 191, 240, 91, 88, 5, 88, 83,
132, 141, 121]

Encoding this octet sequence as base64url provides the value of the
code_verifier:

dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

The code_verifier is then hashed via the SHA256 hash function to
produce:

[19, 211, 30, 150, 26, 26, 216, 236, 47, 22, 177, 12, 76, 152, 46,
8, 118, 168, 120, 173, 109, 241, 68, 86, 110, 225, 137, 74, 203,
112, 249, 195]

Sakimura, et al. Standards Track [Page 17]

RFC 7636: Proof Key for Code Exchange (PKCE) 127

RFC 7636 OAUTH PKCE September 2015

Encoding this octet sequence as base64url provides the value of the
code_challenge:

E9Melhoa2OwvFrEMTJguCHaoeK1t8URWbuGJSstw-cM

The authorization request includes:

code_challenge=E9Melhoa2OwvFrEMTJguCHaoeK1t8URWbuGJSstw-cM
&code_challenge_method=S256

The authorization server then records the code_challenge and
code_challenge_method along with the code that is granted to the
client.

In the request to the token_endpoint, the client includes the code
received in the authorization response as well as the additional
parameter:

code_verifier=dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

The authorization server retrieves the information for the code
grant. Based on the recorded code_challenge_method being S256, it
then hashes and base64url-encodes the value of code_verifier:

BASE64URL-ENCODE(SHA256(ASCII(code_verifier)))

The calculated value is then compared with the value of
"code_challenge":

BASE64URL-ENCODE(SHA256(ASCII(code_verifier))) == code_challenge

If the two values are equal, then the authorization server can
provide the tokens as long as there are no other errors in the
request. If the values are not equal, then the request must be
rejected, and an error returned.

Sakimura, et al. Standards Track [Page 18]

128 RFC 7636: Proof Key for Code Exchange (PKCE)

RFC 7636 OAUTH PKCE September 2015

Acknowledgements

The initial draft version of this specification was created by the
OpenID AB/Connect Working Group of the OpenID Foundation.

This specification is the work of the OAuth Working Group, which
includes dozens of active and dedicated participants. In particular,
the following individuals contributed ideas, feedback, and wording
that shaped and formed the final specification:

Anthony Nadalin, Microsoft
Axel Nenker, Deutsche Telekom
Breno de Medeiros, Google
Brian Campbell, Ping Identity
Chuck Mortimore, Salesforce
Dirk Balfanz, Google
Eduardo Gueiros, Jive Communications
Hannes Tschonfenig, ARM
James Manger, Telstra
Justin Richer, MIT Kerberos
Josh Mandel, Boston Children's Hospital
Lewis Adam, Motorola Solutions
Madjid Nakhjiri, Samsung
Michael B. Jones, Microsoft
Paul Madsen, Ping Identity
Phil Hunt, Oracle
Prateek Mishra, Oracle
Ryo Ito, mixi
Scott Tomilson, Ping Identity
Sergey Beryozkin
Takamichi Saito
Torsten Lodderstedt, Deutsche Telekom
William Denniss, Google

Sakimura, et al. Standards Track [Page 19]

RFC 7636: Proof Key for Code Exchange (PKCE) 129

RFC 7636 OAUTH PKCE September 2015

Authors' Addresses

Nat Sakimura (editor)
Nomura Research Institute
1-6-5 Marunouchi, Marunouchi Kitaguchi Bldg.
Chiyoda-ku, Tokyo 100-0005
Japan

Phone: +81-3-5533-2111
Email: n-sakimura@nri.co.jp
URI: http://nat.sakimura.org/

John Bradley
Ping Identity
Casilla 177, Sucursal Talagante
Talagante, RM
Chile

Phone: +44 20 8133 3718
Email: ve7jtb@ve7jtb.com
URI: http://www.thread-safe.com/

Naveen Agarwal
Google
1600 Amphitheatre Parkway
Mountain View, CA 94043
United States

Phone: +1 650-253-0000
Email: naa@google.com
URI: http://google.com/

Sakimura, et al. Standards Track [Page 20]

130 RFC 7636: Proof Key for Code Exchange (PKCE)

RFC 7636: Proof Key for Code Exchange (PKCE) 131

132 RFC 7636: Proof Key for Code Exchange (PKCE)

Chapter 4

RFC 6819: OAuth 2.0 Threat
Model and Security
Considerations

The Threat Model and Security Considerations document
was written to provide additional guidance beyond what
is described in the core RFC. Much of this document was
added after major providers had real implementation
experience. The document describes many known attacks,
either theoretical attacks or ones that have been
demonstrated in the wild, and describes countermeasures
for each.

If you are implementing an OAuth server from scratch,
this is absolutely a must-read. Most of this advice is
intended for implementers of authorization servers or
resource servers, but some of it applies to client
developers as well.

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 133

134 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

Internet Engineering Task Force (IETF) T. Lodderstedt, Ed.
Request for Comments: 6819 Deutsche Telekom AG
Category: Informational M. McGloin
ISSN: 2070-1721 IBM

P. Hunt
Oracle Corporation

January 2013

OAuth 2.0 Threat Model and Security Considerations

Abstract

This document gives additional security considerations for OAuth,
beyond those in the OAuth 2.0 specification, based on a comprehensive
threat model for the OAuth 2.0 protocol.

Status of This Memo

This document is not an Internet Standards Track specification; it is
published for informational purposes.

This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are a candidate for any level of Internet
Standard; see Section 2 of RFC 5741.

Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc6819.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Lodderstedt, et al. Informational [Page 1]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 135

RFC 6819 OAuth 2.0 Security January 2013

Table of Contents

1. Introduction ..6
2. Overview ..7

2.1. Scope ..7
2.2. Attack Assumptions ...7
2.3. Architectural Assumptions8

2.3.1. Authorization Servers8
2.3.2. Resource Server9
2.3.3. Client ..9

3. Security Features ...9
3.1. Tokens ..10

3.1.1. Scope ..11
3.1.2. Limited Access Token Lifetime11

3.2. Access Token ..11
3.3. Refresh Token ...11
3.4. Authorization "code"12
3.5. Redirect URI ..13
3.6. "state" Parameter ...13
3.7. Client Identifier ...13

4. Threat Model ...15
4.1. Clients ...16

4.1.1. Threat: Obtaining Client Secrets16
4.1.2. Threat: Obtaining Refresh Tokens17
4.1.3. Threat: Obtaining Access Tokens19
4.1.4. Threat: End-User Credentials Phished Using

Compromised or Embedded Browser19
4.1.5. Threat: Open Redirectors on Client20

4.2. Authorization Endpoint21
4.2.1. Threat: Password Phishing by Counterfeit

Authorization Server21
4.2.2. Threat: User Unintentionally Grants Too

Much Access Scope21
4.2.3. Threat: Malicious Client Obtains Existing

Authorization by Fraud22
4.2.4. Threat: Open Redirector22

4.3. Token Endpoint ..23
4.3.1. Threat: Eavesdropping Access Tokens23
4.3.2. Threat: Obtaining Access Tokens from

Authorization Server Database23
4.3.3. Threat: Disclosure of Client Credentials

during Transmission23
4.3.4. Threat: Obtaining Client Secret from

Authorization Server Database24
4.3.5. Threat: Obtaining Client Secret by Online Guessing .24

Lodderstedt, et al. Informational [Page 2]

136 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

4.4. Obtaining Authorization25
4.4.1. Authorization "code"25

4.4.1.1. Threat: Eavesdropping or Leaking
Authorization "codes"25

4.4.1.2. Threat: Obtaining Authorization "codes"
from Authorization Server Database26

4.4.1.3. Threat: Online Guessing of
Authorization "codes"27

4.4.1.4. Threat: Malicious Client Obtains
Authorization27

4.4.1.5. Threat: Authorization "code" Phishing29
4.4.1.6. Threat: User Session Impersonation29
4.4.1.7. Threat: Authorization "code" Leakage

through Counterfeit Client30
4.4.1.8. Threat: CSRF Attack against redirect-uri ..32
4.4.1.9. Threat: Clickjacking Attack against

Authorization33
4.4.1.10. Threat: Resource Owner Impersonation33
4.4.1.11. Threat: DoS Attacks That Exhaust

Resources34
4.4.1.12. Threat: DoS Using Manufactured

Authorization "codes"35
4.4.1.13. Threat: Code Substitution (OAuth Login) ..36

4.4.2. Implicit Grant37
4.4.2.1. Threat: Access Token Leak in

Transport/Endpoints37
4.4.2.2. Threat: Access Token Leak in

Browser History38
4.4.2.3. Threat: Malicious Client Obtains

Authorization38
4.4.2.4. Threat: Manipulation of Scripts38
4.4.2.5. Threat: CSRF Attack against redirect-uri ..39
4.4.2.6. Threat: Token Substitution (OAuth Login) ..39

4.4.3. Resource Owner Password Credentials40
4.4.3.1. Threat: Accidental Exposure of

Passwords at Client Site41
4.4.3.2. Threat: Client Obtains Scopes

without End-User Authorization42
4.4.3.3. Threat: Client Obtains Refresh

Token through Automatic Authorization42
4.4.3.4. Threat: Obtaining User Passwords

on Transport43
4.4.3.5. Threat: Obtaining User Passwords

from Authorization Server Database43
4.4.3.6. Threat: Online Guessing43

4.4.4. Client Credentials44

Lodderstedt, et al. Informational [Page 3]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 137

RFC 6819 OAuth 2.0 Security January 2013

4.5. Refreshing an Access Token44
4.5.1. Threat: Eavesdropping Refresh Tokens from

Authorization Server44
4.5.2. Threat: Obtaining Refresh Token from

Authorization Server Database44
4.5.3. Threat: Obtaining Refresh Token by Online

Guessing ...45
4.5.4. Threat: Refresh Token Phishing by

Counterfeit Authorization Server45
4.6. Accessing Protected Resources46

4.6.1. Threat: Eavesdropping Access Tokens on Transport ...46
4.6.2. Threat: Replay of Authorized Resource

Server Requests46
4.6.3. Threat: Guessing Access Tokens46
4.6.4. Threat: Access Token Phishing by

Counterfeit Resource Server47
4.6.5. Threat: Abuse of Token by Legitimate

Resource Server or Client48
4.6.6. Threat: Leak of Confidential Data in HTTP Proxies ..48
4.6.7. Threat: Token Leakage via Log Files and

HTTP Referrers48
5. Security Considerations ..49

5.1. General ...49
5.1.1. Ensure Confidentiality of Requests49
5.1.2. Utilize Server Authentication50
5.1.3. Always Keep the Resource Owner Informed50
5.1.4. Credentials ..51

5.1.4.1. Enforce Credential Storage
Protection Best Practices51

5.1.4.2. Online Attacks on Secrets52
5.1.5. Tokens (Access, Refresh, Code)53

5.1.5.1. Limit Token Scope53
5.1.5.2. Determine Expiration Time54
5.1.5.3. Use Short Expiration Time54
5.1.5.4. Limit Number of Usages or One-Time Usage ..55
5.1.5.5. Bind Tokens to a Particular

Resource Server (Audience)55
5.1.5.6. Use Endpoint Address as Token Audience56
5.1.5.7. Use Explicitly Defined Scopes for

Audience and Tokens56
5.1.5.8. Bind Token to Client id56
5.1.5.9. Sign Self-Contained Tokens56
5.1.5.10. Encrypt Token Content56
5.1.5.11. Adopt a Standard Assertion Format57

5.1.6. Access Tokens57

Lodderstedt, et al. Informational [Page 4]

138 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

5.2. Authorization Server57
5.2.1. Authorization "codes"57

5.2.1.1. Automatic Revocation of Derived
Tokens If Abuse Is Detected57

5.2.2. Refresh Tokens57
5.2.2.1. Restricted Issuance of Refresh Tokens57
5.2.2.2. Binding of Refresh Token to "client_id" ...58
5.2.2.3. Refresh Token Rotation58
5.2.2.4. Revocation of Refresh Tokens58
5.2.2.5. Device Identification59
5.2.2.6. X-FRAME-OPTIONS Header59

5.2.3. Client Authentication and Authorization59
5.2.3.1. Don't Issue Secrets to Clients with

Inappropriate Security Policy60
5.2.3.2. Require User Consent for Public

Clients without Secret60
5.2.3.3. Issue a "client_id" Only in

Combination with "redirect_uri"61
5.2.3.4. Issue Installation-Specific Client

Secrets61
5.2.3.5. Validate Pre-Registered "redirect_uri"62
5.2.3.6. Revoke Client Secrets63
5.2.3.7. Use Strong Client Authentication

(e.g., client_assertion/client_token)63
5.2.4. End-User Authorization63

5.2.4.1. Automatic Processing of Repeated
Authorizations Requires Client Validation .63

5.2.4.2. Informed Decisions Based on Transparency ..63
5.2.4.3. Validation of Client Properties by

End User64
5.2.4.4. Binding of Authorization "code" to

"client_id"64
5.2.4.5. Binding of Authorization "code" to

"redirect_uri"64
5.3. Client App Security65

5.3.1. Don't Store Credentials in Code or
Resources Bundled with Software Packages65

5.3.2. Use Standard Web Server Protection Measures
(for Config Files and Databases)65

5.3.3. Store Secrets in Secure Storage65
5.3.4. Utilize Device Lock to Prevent Unauthorized

Device Access66
5.3.5. Link the "state" Parameter to User Agent Session ...66

5.4. Resource Servers ..66
5.4.1. Authorization Headers66
5.4.2. Authenticated Requests67
5.4.3. Signed Requests67

5.5. A Word on User Interaction and User-Installed Apps68

Lodderstedt, et al. Informational [Page 5]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 139

RFC 6819 OAuth 2.0 Security January 2013

6. Acknowledgements ...69
7. References ...69

7.1. Normative References69
7.2. Informative References69

1. Introduction

This document gives additional security considerations for OAuth,
beyond those in the OAuth specification, based on a comprehensive
threat model for the OAuth 2.0 protocol [RFC6749]. It contains the
following content:

o Documents any assumptions and scope considered when creating the
threat model.

o Describes the security features built into the OAuth protocol and
how they are intended to thwart attacks.

o Gives a comprehensive threat model for OAuth and describes the
respective countermeasures to thwart those threats.

Threats include any intentional attacks on OAuth tokens and resources
protected by OAuth tokens, as well as security risks introduced if
the proper security measures are not put in place. Threats are
structured along the lines of the protocol structure to help
development teams implement each part of the protocol securely, for
example, all threats for granting access, or all threats for a
particular grant type, or all threats for protecting the resource
server.

Note: This document cannot assess the probability or the risk
associated with a particular threat because those aspects strongly
depend on the particular application and deployment OAuth is used to
protect. Similarly, impacts are given on a rather abstract level.
But the information given here may serve as a foundation for
deployment-specific threat models. Implementors may refine and
detail the abstract threat model in order to account for the specific
properties of their deployment and to come up with a risk analysis.
As this document is based on the base OAuth 2.0 specification, it
does not consider proposed extensions such as client registration or
discovery, many of which are still under discussion.

Lodderstedt, et al. Informational [Page 6]

140 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

2. Overview

2.1. Scope

This security considerations document only considers clients bound to
a particular deployment as supported by [RFC6749]. Such deployments
have the following characteristics:

o Resource server URLs are static and well-known at development
time; authorization server URLs can be static or discovered.

o Token scope values (e.g., applicable URLs and methods) are well-
known at development time.

o Client registration is out of scope of the current core
specification. Therefore, this document assumes a broad variety
of options, from static registration during development time to
dynamic registration at runtime.

The following are considered out of scope:

o Communication between the authorization server and resource
server.

o Token formats.

o Except for the resource owner password credentials grant type (see
[RFC6749], Section 4.3), the mechanism used by authorization
servers to authenticate the user.

o Mechanism by which a user obtained an assertion and any resulting
attacks mounted as a result of the assertion being false.

o Clients not bound to a specific deployment: An example could be a
mail client with support for contact list access via the portable
contacts API (see [Portable-Contacts]). Such clients cannot be
registered upfront with a particular deployment and should
dynamically discover the URLs relevant for the OAuth protocol.

2.2. Attack Assumptions

The following assumptions relate to an attacker and resources
available to an attacker. It is assumed that:

o the attacker has full access to the network between the client and
authorization servers and the client and the resource server,
respectively. The attacker may eavesdrop on any communications

Lodderstedt, et al. Informational [Page 7]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 141

RFC 6819 OAuth 2.0 Security January 2013

between those parties. He is not assumed to have access to
communication between the authorization server and resource
server.

o an attacker has unlimited resources to mount an attack.

o two of the three parties involved in the OAuth protocol may
collude to mount an attack against the 3rd party. For example,
the client and authorization server may be under control of an
attacker and collude to trick a user to gain access to resources.

2.3. Architectural Assumptions

This section documents assumptions about the features, limitations,
and design options of the different entities of an OAuth deployment
along with the security-sensitive data elements managed by those
entities. These assumptions are the foundation of the threat
analysis.

The OAuth protocol leaves deployments with a certain degree of
freedom regarding how to implement and apply the standard. The core
specification defines the core concepts of an authorization server
and a resource server. Both servers can be implemented in the same
server entity, or they may also be different entities. The latter is
typically the case for multi-service providers with a single
authentication and authorization system and is more typical in
middleware architectures.

2.3.1. Authorization Servers

The following data elements are stored or accessible on the
authorization server:

o usernames and passwords

o client ids and secrets

o client-specific refresh tokens

o client-specific access tokens (in the case of handle-based design;
see Section 3.1)

o HTTPS certificate/key

o per-authorization process (in the case of handle-based design;
Section 3.1): "redirect_uri", "client_id", authorization "code"

Lodderstedt, et al. Informational [Page 8]

142 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

2.3.2. Resource Server

The following data elements are stored or accessible on the resource
server:

o user data (out of scope)

o HTTPS certificate/key

o either authorization server credentials (handle-based design; see
Section 3.1) or authorization server shared secret/public key
(assertion-based design; see Section 3.1)

o access tokens (per request)

It is assumed that a resource server has no knowledge of refresh
tokens, user passwords, or client secrets.

2.3.3. Client

In OAuth, a client is an application making protected resource
requests on behalf of the resource owner and with its authorization.
There are different types of clients with different implementation
and security characteristics, such as web, user-agent-based, and
native applications. A full definition of the different client types
and profiles is given in [RFC6749], Section 2.1.

The following data elements are stored or accessible on the client:

o client id (and client secret or corresponding client credential)

o one or more refresh tokens (persistent) and access tokens
(transient) per end user or other security-context or delegation
context

o trusted certification authority (CA) certificates (HTTPS)

o per-authorization process: "redirect_uri", authorization "code"

3. Security Features

These are some of the security features that have been built into the
OAuth 2.0 protocol to mitigate attacks and security issues.

Lodderstedt, et al. Informational [Page 9]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 143

RFC 6819 OAuth 2.0 Security January 2013

3.1. Tokens

OAuth makes extensive use of many kinds of tokens (access tokens,
refresh tokens, authorization "codes"). The information content of a
token can be represented in two ways, as follows:

Handle (or artifact) A 'handle' is a reference to some internal data
structure within the authorization server; the internal data
structure contains the attributes of the token, such as user id
(UID), scope, etc. Handles enable simple revocation and do not
require cryptographic mechanisms to protect token content from
being modified. On the other hand, handles require communication
between the issuing and consuming entity (e.g., the authorization
server and resource server) in order to validate the token and
obtain token-bound data. This communication might have a negative
impact on performance and scalability if both entities reside on
different systems. Handles are therefore typically used if the
issuing and consuming entity are the same. A 'handle' token is
often referred to as an 'opaque' token because the resource server
does not need to be able to interpret the token directly; it
simply uses the token.

Assertion (aka self-contained token) An assertion is a parseable
token. An assertion typically has a duration, has an audience,
and is digitally signed in order to ensure data integrity and
origin authentication. It contains information about the user and
the client. Examples of assertion formats are Security Assertion
Markup Language (SAML) assertions [OASIS.saml-core-2.0-os] and
Kerberos tickets [RFC4120]. Assertions can typically be directly
validated and used by a resource server without interactions with
the authorization server. This results in better performance and
scalability in deployments where the issuing and consuming
entities reside on different systems. Implementing token
revocation is more difficult with assertions than with handles.

Tokens can be used in two ways to invoke requests on resource
servers, as follows:

bearer token A 'bearer token' is a token that can be used by any
client who has received the token (e.g., [RFC6750]). Because mere
possession is enough to use the token, it is important that
communication between endpoints be secured to ensure that only
authorized endpoints may capture the token. The bearer token is
convenient for client applications, as it does not require them to
do anything to use them (such as a proof of identity). Bearer
tokens have similar characteristics to web single-sign-on (SSO)
cookies used in browsers.

Lodderstedt, et al. Informational [Page 10]

144 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

proof token A 'proof token' is a token that can only be used by a
specific client. Each use of the token requires the client to
perform some action that proves that it is the authorized user of
the token. Examples of this are MAC-type access tokens, which
require the client to digitally sign the resource request with a
secret corresponding to the particular token sent with the request
(e.g., [OAuth-HTTP-MAC]).

3.1.1. Scope

A scope represents the access authorization associated with a
particular token with respect to resource servers, resources, and
methods on those resources. Scopes are the OAuth way to explicitly
manage the power associated with an access token. A scope can be
controlled by the authorization server and/or the end user in order
to limit access to resources for OAuth clients that these parties
deem less secure or trustworthy. Optionally, the client can request
the scope to apply to the token but only for a lesser scope than
would otherwise be granted, e.g., to reduce the potential impact if
this token is sent over non-secure channels. A scope is typically
complemented by a restriction on a token's lifetime.

3.1.2. Limited Access Token Lifetime

The protocol parameter "expires_in" allows an authorization server
(based on its policies or on behalf of the end user) to limit the
lifetime of an access token and to pass this information to the
client. This mechanism can be used to issue short-lived tokens to
OAuth clients that the authorization server deems less secure, or
where sending tokens over non-secure channels.

3.2. Access Token

An access token is used by a client to access a resource. Access
tokens typically have short life spans (minutes or hours) that cover
typical session lifetimes. An access token may be refreshed through
the use of a refresh token. The short lifespan of an access token,
in combination with the usage of refresh tokens, enables the
possibility of passive revocation of access authorization on the
expiry of the current access token.

3.3. Refresh Token

A refresh token represents a long-lasting authorization of a certain
client to access resources on behalf of a resource owner. Such
tokens are exchanged between the client and authorization server
only. Clients use this kind of token to obtain ("refresh") new
access tokens used for resource server invocations.

Lodderstedt, et al. Informational [Page 11]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 145

RFC 6819 OAuth 2.0 Security January 2013

A refresh token, coupled with a short access token lifetime, can be
used to grant longer access to resources without involving end-user
authorization. This offers an advantage where resource servers and
authorization servers are not the same entity, e.g., in a distributed
environment, as the refresh token is always exchanged at the
authorization server. The authorization server can revoke the
refresh token at any time, causing the granted access to be revoked
once the current access token expires. Because of this, a short
access token lifetime is important if timely revocation is a high
priority.

The refresh token is also a secret bound to the client identifier and
client instance that originally requested the authorization; the
refresh token also represents the original resource owner grant.
This is ensured by the authorization process as follows:

1. The resource owner and user agent safely deliver the
authorization "code" to the client instance in the first place.

2. The client uses it immediately in secure transport-level
communications to the authorization server and then securely
stores the long-lived refresh token.

3. The client always uses the refresh token in secure transport-
level communications to the authorization server to get an access
token (and optionally roll over the refresh token).

So, as long as the confidentiality of the particular token can be
ensured by the client, a refresh token can also be used as an
alternative means to authenticate the client instance itself.

3.4. Authorization "code"

An authorization "code" represents the intermediate result of a
successful end-user authorization process and is used by the client
to obtain access and refresh tokens. Authorization "codes" are sent
to the client's redirect URI instead of tokens for two purposes:

1. Browser-based flows expose protocol parameters to potential
attackers via URI query parameters (HTTP referrer), the browser
cache, or log file entries, and could be replayed. In order to
reduce this threat, short-lived authorization "codes" are passed
instead of tokens and exchanged for tokens over a more secure
direct connection between the client and the authorization
server.

Lodderstedt, et al. Informational [Page 12]

146 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

2. It is much simpler to authenticate clients during the direct
request between the client and the authorization server than in
the context of the indirect authorization request. The latter
would require digital signatures.

3.5. Redirect URI

A redirect URI helps to detect malicious clients and prevents
phishing attacks from clients attempting to trick the user into
believing the phisher is the client. The value of the actual
redirect URI used in the authorization request has to be presented
and is verified when an authorization "code" is exchanged for tokens.
This helps to prevent attacks where the authorization "code" is
revealed through redirectors and counterfeit web application clients.
The authorization server should require public clients and
confidential clients using the implicit grant type to pre-register
their redirect URIs and validate against the registered redirect URI
in the authorization request.

3.6. "state" Parameter

The "state" parameter is used to link requests and callbacks to
prevent cross-site request forgery attacks (see Section 4.4.1.8)
where an attacker authorizes access to his own resources and then
tricks a user into following a redirect with the attacker's token.
This parameter should bind to the authenticated state in a user agent
and, as per the core OAuth spec, the user agent must be capable of
keeping it in a location accessible only by the client and user
agent, i.e., protected by same-origin policy.

3.7. Client Identifier

Authentication protocols have typically not taken into account the
identity of the software component acting on behalf of the end user.
OAuth does this in order to increase the security level in delegated
authorization scenarios and because the client will be able to act
without the user being present.

OAuth uses the client identifier to collate associated requests to
the same originator, such as

o a particular end-user authorization process and the corresponding
request on the token's endpoint to exchange the authorization
"code" for tokens, or

Lodderstedt, et al. Informational [Page 13]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 147

RFC 6819 OAuth 2.0 Security January 2013

o the initial authorization and issuance of a token by an end user
to a particular client, and subsequent requests by this client to
obtain tokens without user consent (automatic processing of
repeated authorizations)

This identifier may also be used by the authorization server to
display relevant registration information to a user when requesting
consent for a scope requested by a particular client. The client
identifier may be used to limit the number of requests for a
particular client or to charge the client per request. It may
furthermore be useful to differentiate access by different clients,
e.g., in server log files.

OAuth defines two client types, confidential and public, based on
their ability to authenticate with the authorization server (i.e.,
ability to maintain the confidentiality of their client credentials).
Confidential clients are capable of maintaining the confidentiality
of client credentials (i.e., a client secret associated with the
client identifier) or capable of secure client authentication using
other means, such as a client assertion (e.g., SAML) or key
cryptography. The latter is considered more secure.

The authorization server should determine whether the client is
capable of keeping its secret confidential or using secure
authentication. Alternatively, the end user can verify the identity
of the client, e.g., by only installing trusted applications. The
redirect URI can be used to prevent the delivery of credentials to a
counterfeit client after obtaining end-user authorization in some
cases but can't be used to verify the client identifier.

Clients can be categorized as follows based on the client type,
profile (e.g., native vs. web application; see [RFC6749], Section 9),
and deployment model:

Deployment-independent "client_id" with pre-registered "redirect_uri"
and without "client_secret" Such an identifier is used by
multiple installations of the same software package. The
identifier of such a client can only be validated with the help of
the end-user. This is a viable option for native applications in
order to identify the client for the purpose of displaying meta
information about the client to the user and to differentiate
clients in log files. Revocation of the rights associated with
such a client identifier will affect ALL deployments of the
respective software.

Lodderstedt, et al. Informational [Page 14]

148 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

Deployment-independent "client_id" with pre-registered "redirect_uri"
and with "client_secret" This is an option for native
applications only, since web applications would require different
redirect URIs. This category is not advisable because the client
secret cannot be protected appropriately (see Section 4.1.1). Due
to its security weaknesses, such client identities have the same
trust level as deployment-independent clients without secrets.
Revocation will affect ALL deployments.

Deployment-specific "client_id" with pre-registered "redirect_uri"
and with "client_secret" The client registration process ensures
the validation of the client's properties, such as redirect URI,
web site URL, web site name, and contacts. Such a client
identifier can be utilized for all relevant use cases cited above.
This level can be achieved for web applications in combination
with a manual or user-bound registration process. Achieving this
level for native applications is much more difficult. Either the
installation of the application is conducted by an administrator,
who validates the client's authenticity, or the process from
validating the application to the installation of the application
on the device and the creation of the client credentials is
controlled end-to-end by a single entity (e.g., application market
provider). Revocation will affect a single deployment only.

Deployment-specific "client_id" with "client_secret" without
validated properties Such a client can be recognized by the
authorization server in transactions with subsequent requests
(e.g., authorization and token issuance, refresh token issuance,
and access token refreshment). The authorization server cannot
assure any property of the client to end users. Automatic
processing of re-authorizations could be allowed as well. Such
client credentials can be generated automatically without any
validation of client properties, which makes it another option,
especially for native applications. Revocation will affect a
single deployment only.

4. Threat Model

This section gives a comprehensive threat model of OAuth 2.0.
Threats are grouped first by attacks directed against an OAuth
component, which are the client, authorization server, and resource
server. Subsequently, they are grouped by flow, e.g., obtain token
or access protected resources. Every countermeasure description
refers to a detailed description in Section 5.

Lodderstedt, et al. Informational [Page 15]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 149

RFC 6819 OAuth 2.0 Security January 2013

4.1. Clients

This section describes possible threats directed to OAuth clients.

4.1.1. Threat: Obtaining Client Secrets

The attacker could try to get access to the secret of a particular
client in order to:

o replay its refresh tokens and authorization "codes", or

o obtain tokens on behalf of the attacked client with the privileges
of that "client_id" acting as an instance of the client.

The resulting impact would be the following:

o Client authentication of access to the authorization server can be
bypassed.

o Stolen refresh tokens or authorization "codes" can be replayed.

Depending on the client category, the following attacks could be
utilized to obtain the client secret.

Attack: Obtain Secret From Source Code or Binary:

This applies for all client types. For open source projects, secrets
can be extracted directly from source code in their public
repositories. Secrets can be extracted from application binaries
just as easily when the published source is not available to the
attacker. Even if an application takes significant measures to
obfuscate secrets in their application distribution, one should
consider that the secret can still be reverse-engineered by anyone
with access to a complete functioning application bundle or binary.

Countermeasures:

o Don't issue secrets to public clients or clients with
inappropriate security policy (Section 5.2.3.1).

o Require user consent for public clients (Section 5.2.3.2).

o Use deployment-specific client secrets (Section 5.2.3.4).

o Revoke client secrets (Section 5.2.3.6).

Lodderstedt, et al. Informational [Page 16]

150 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

Attack: Obtain a Deployment-Specific Secret:

An attacker may try to obtain the secret from a client installation,
either from a web site (web server) or a particular device (native
application).

Countermeasures:

o Web server: Apply standard web server protection measures (for
config files and databases) (see Section 5.3.2).

o Native applications: Store secrets in secure local storage
(Section 5.3.3).

o Revoke client secrets (Section 5.2.3.6).

4.1.2. Threat: Obtaining Refresh Tokens

Depending on the client type, there are different ways that refresh
tokens may be revealed to an attacker. The following sub-sections
give a more detailed description of the different attacks with
respect to different client types and further specialized
countermeasures. Before detailing those threats, here are some
generally applicable countermeasures:

o The authorization server should validate the client id associated
with the particular refresh token with every refresh request
(Section 5.2.2.2).

o Limit token scope (Section 5.1.5.1).

o Revoke refresh tokens (Section 5.2.2.4).

o Revoke client secrets (Section 5.2.3.6).

o Refresh tokens can automatically be replaced in order to detect
unauthorized token usage by another party (see "Refresh Token
Rotation", Section 5.2.2.3).

Attack: Obtain Refresh Token from Web Application:

An attacker may obtain the refresh tokens issued to a web application
by way of overcoming the web server's security controls.

Impact: Since a web application manages the user accounts of a
certain site, such an attack would result in an exposure of all
refresh tokens on that site to the attacker.

Lodderstedt, et al. Informational [Page 17]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 151

RFC 6819 OAuth 2.0 Security January 2013

Countermeasures:

o Standard web server protection measures (Section 5.3.2).

o Use strong client authentication (e.g., client_assertion/
client_token) so the attacker cannot obtain the client secret
required to exchange the tokens (Section 5.2.3.7).

Attack: Obtain Refresh Token from Native Clients:

On native clients, leakage of a refresh token typically affects a
single user only.

Read from local file system: The attacker could try to get file
system access on the device and read the refresh tokens. The
attacker could utilize a malicious application for that purpose.

Countermeasures:

o Store secrets in secure storage (Section 5.3.3).

o Utilize device lock to prevent unauthorized device access
(Section 5.3.4).

Attack: Steal Device:

The host device (e.g., mobile phone) may be stolen. In that case,
the attacker gets access to all applications under the identity of
the legitimate user.

Countermeasures:

o Utilize device lock to prevent unauthorized device access
(Section 5.3.4).

o Where a user knows the device has been stolen, they can revoke the
affected tokens (Section 5.2.2.4).

Attack: Clone Device:

All device data and applications are copied to another device.
Applications are used as-is on the target device.

Lodderstedt, et al. Informational [Page 18]

152 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

Countermeasures:

o Utilize device lock to prevent unauthorized device access
(Section 5.3.4).

o Combine refresh token request with device identification
(Section 5.2.2.5).

o Refresh token rotation (Section 5.2.2.3).

o Where a user knows the device has been cloned, they can use
refresh token revocation (Section 5.2.2.4).

4.1.3. Threat: Obtaining Access Tokens

Depending on the client type, there are different ways that access
tokens may be revealed to an attacker. Access tokens could be stolen
from the device if the application stores them in a storage device
that is accessible to other applications.

Impact: Where the token is a bearer token and no additional mechanism
is used to identify the client, the attacker can access all resources
associated with the token and its scope.

Countermeasures:

o Keep access tokens in transient memory and limit grants
(Section 5.1.6).

o Limit token scope (Section 5.1.5.1).

o Keep access tokens in private memory or apply same protection
means as for refresh tokens (Section 5.2.2).

o Keep access token lifetime short (Section 5.1.5.3).

4.1.4. Threat: End-User Credentials Phished Using Compromised or
Embedded Browser

A malicious application could attempt to phish end-user passwords by
misusing an embedded browser in the end-user authorization process,
or by presenting its own user interface instead of allowing a trusted
system browser to render the authorization user interface. By doing
so, the usual visual trust mechanisms may be bypassed (e.g.,
Transport Layer Security (TLS) confirmation, web site mechanisms).
By using an embedded or internal client application user interface,
the client application has access to additional information to which
it should not have access (e.g., UID/password).

Lodderstedt, et al. Informational [Page 19]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 153

RFC 6819 OAuth 2.0 Security January 2013

Impact: If the client application or the communication is
compromised, the user would not be aware of this, and all information
in the authorization exchange, such as username and password, could
be captured.

Countermeasures:

o The OAuth flow is designed so that client applications never need
to know user passwords. Client applications should avoid directly
asking users for their credentials. In addition, end users could
be educated about phishing attacks and best practices, such as
only accessing trusted clients, as OAuth does not provide any
protection against malicious applications and the end user is
solely responsible for the trustworthiness of any native
application installed.

o Client applications could be validated prior to publication in an
application market for users to access. That validation is out of
scope for OAuth but could include validating that the client
application handles user authentication in an appropriate way.

o Client developers should not write client applications that
collect authentication information directly from users and should
instead delegate this task to a trusted system component, e.g.,
the system browser.

4.1.5. Threat: Open Redirectors on Client

An open redirector is an endpoint using a parameter to automatically
redirect a user agent to the location specified by the parameter
value without any validation. If the authorization server allows the
client to register only part of the redirect URI, an attacker can use
an open redirector operated by the client to construct a redirect URI
that will pass the authorization server validation but will send the
authorization "code" or access token to an endpoint under the control
of the attacker.

Impact: An attacker could gain access to authorization "codes" or
access tokens.

Countermeasures:

o Require clients to register full redirect URI (Section 5.2.3.5).

Lodderstedt, et al. Informational [Page 20]

154 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

4.2. Authorization Endpoint

4.2.1. Threat: Password Phishing by Counterfeit Authorization Server

OAuth makes no attempt to verify the authenticity of the
authorization server. A hostile party could take advantage of this
by intercepting the client's requests and returning misleading or
otherwise incorrect responses. This could be achieved using DNS or
Address Resolution Protocol (ARP) spoofing. Wide deployment of OAuth
and similar protocols may cause users to become inured to the
practice of being redirected to web sites where they are asked to
enter their passwords. If users are not careful to verify the
authenticity of these web sites before entering their credentials, it
will be possible for attackers to exploit this practice to steal
users' passwords.

Countermeasures:

o Authorization servers should consider such attacks when developing
services based on OAuth and should require the use of transport-
layer security for any requests where the authenticity of the
authorization server or of request responses is an issue (see
Section 5.1.2).

o Authorization servers should attempt to educate users about the
risks posed by phishing attacks and should provide mechanisms that
make it easy for users to confirm the authenticity of their sites.

4.2.2. Threat: User Unintentionally Grants Too Much Access Scope

When obtaining end-user authorization, the end user may not
understand the scope of the access being granted and to whom, or they
may end up providing a client with access to resources that should
not be permitted.

Countermeasures:

o Explain the scope (resources and the permissions) the user is
about to grant in an understandable way (Section 5.2.4.2).

o Narrow the scope, based on the client. When obtaining end-user
authorization and where the client requests scope, the
authorization server may want to consider whether to honor that
scope based on the client identifier. That decision is between
the client and authorization server and is outside the scope of
this spec. The authorization server may also want to consider
what scope to grant based on the client type, e.g., providing
lower scope to public clients (Section 5.1.5.1).

Lodderstedt, et al. Informational [Page 21]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 155

RFC 6819 OAuth 2.0 Security January 2013

4.2.3. Threat: Malicious Client Obtains Existing Authorization by Fraud

Authorization servers may wish to automatically process authorization
requests from clients that have been previously authorized by the
user. When the user is redirected to the authorization server's end-
user authorization endpoint to grant access, the authorization server
detects that the user has already granted access to that particular
client. Instead of prompting the user for approval, the
authorization server automatically redirects the user back to the
client.

A malicious client may exploit that feature and try to obtain such an
authorization "code" instead of the legitimate client.

Countermeasures:

o Authorization servers should not automatically process repeat
authorizations to public clients unless the client is validated
using a pre-registered redirect URI (Section 5.2.3.5).

o Authorization servers can mitigate the risks associated with
automatic processing by limiting the scope of access tokens
obtained through automated approvals (Section 5.1.5.1).

4.2.4. Threat: Open Redirector

An attacker could use the end-user authorization endpoint and the
redirect URI parameter to abuse the authorization server as an open
redirector. An open redirector is an endpoint using a parameter to
automatically redirect a user agent to the location specified by the
parameter value without any validation.

Impact: An attacker could utilize a user's trust in an authorization
server to launch a phishing attack.

Countermeasures:

o Require clients to register any full redirect URIs
(Section 5.2.3.5).

o Don't redirect to a redirect URI if the client identifier or
redirect URI can't be verified (Section 5.2.3.5).

Lodderstedt, et al. Informational [Page 22]

156 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

4.3. Token Endpoint

4.3.1. Threat: Eavesdropping Access Tokens

Attackers may attempt to eavesdrop access tokens in transit from the
authorization server to the client.

Impact: The attacker is able to access all resources with the
permissions covered by the scope of the particular access token.

Countermeasures:

o As per the core OAuth spec, the authorization servers must ensure
that these transmissions are protected using transport-layer
mechanisms such as TLS (see Section 5.1.1).

o If end-to-end confidentiality cannot be guaranteed, reducing scope
(see Section 5.1.5.1) and expiry time (Section 5.1.5.3) for access
tokens can be used to reduce the damage in case of leaks.

4.3.2. Threat: Obtaining Access Tokens from Authorization Server
Database

This threat is applicable if the authorization server stores access
tokens as handles in a database. An attacker may obtain access
tokens from the authorization server's database by gaining access to
the database or launching a SQL injection attack.

Impact: Disclosure of all access tokens.

Countermeasures:

o Enforce system security measures (Section 5.1.4.1.1).

o Store access token hashes only (Section 5.1.4.1.3).

o Enforce standard SQL injection countermeasures
(Section 5.1.4.1.2).

4.3.3. Threat: Disclosure of Client Credentials during Transmission

An attacker could attempt to eavesdrop the transmission of client
credentials between the client and server during the client
authentication process or during OAuth token requests.

Impact: Revelation of a client credential enabling phishing or
impersonation of a client service.

Lodderstedt, et al. Informational [Page 23]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 157

RFC 6819 OAuth 2.0 Security January 2013

Countermeasures:

o The transmission of client credentials must be protected using
transport-layer mechanisms such as TLS (see Section 5.1.1).

o Use alternative authentication means that do not require the
sending of plaintext credentials over the wire (e.g., Hash-based
Message Authentication Code).

4.3.4. Threat: Obtaining Client Secret from Authorization Server
Database

An attacker may obtain valid "client_id"/secret combinations from the
authorization server's database by gaining access to the database or
launching a SQL injection attack.

Impact: Disclosure of all "client_id"/secret combinations. This
allows the attacker to act on behalf of legitimate clients.

Countermeasures:

o Enforce system security measures (Section 5.1.4.1.1).

o Enforce standard SQL injection countermeasures
(Section 5.1.4.1.2).

o Ensure proper handling of credentials as per "Enforce Credential
Storage Protection Best Practices" (Section 5.1.4.1).

4.3.5. Threat: Obtaining Client Secret by Online Guessing

An attacker may try to guess valid "client_id"/secret pairs.

Impact: Disclosure of a single "client_id"/secret pair.

Countermeasures:

o Use high entropy for secrets (Section 5.1.4.2.2).

o Lock accounts (Section 5.1.4.2.3).

o Use strong client authentication (Section 5.2.3.7).

Lodderstedt, et al. Informational [Page 24]

158 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

4.4. Obtaining Authorization

This section covers threats that are specific to certain flows
utilized to obtain access tokens. Each flow is characterized by
response types and/or grant types on the end-user authorization and
token endpoint, respectively.

4.4.1. Authorization "code"

4.4.1.1. Threat: Eavesdropping or Leaking Authorization "codes"

An attacker could try to eavesdrop transmission of the authorization
"code" between the authorization server and client. Furthermore,
authorization "codes" are passed via the browser, which may
unintentionally leak those codes to untrusted web sites and attackers
in different ways:

o Referrer headers: Browsers frequently pass a "referer" header when
a web page embeds content, or when a user travels from one web
page to another web page. These referrer headers may be sent even
when the origin site does not trust the destination site. The
referrer header is commonly logged for traffic analysis purposes.

o Request logs: Web server request logs commonly include query
parameters on requests.

o Open redirectors: Web sites sometimes need to send users to
another destination via a redirector. Open redirectors pose a
particular risk to web-based delegation protocols because the
redirector can leak verification codes to untrusted destination
sites.

o Browser history: Web browsers commonly record visited URLs in the
browser history. Another user of the same web browser may be able
to view URLs that were visited by previous users.

Note: A description of similar attacks on the SAML protocol can be
found at [OASIS.sstc-saml-bindings-1.1], Section 4.1.1.9.1;
[Sec-Analysis]; and [OASIS.sstc-sec-analysis-response-01].

Lodderstedt, et al. Informational [Page 25]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 159

RFC 6819 OAuth 2.0 Security January 2013

Countermeasures:

o As per the core OAuth spec, the authorization server as well as
the client must ensure that these transmissions are protected
using transport-layer mechanisms such as TLS (see Section 5.1.1).

o The authorization server will require the client to authenticate
wherever possible, so the binding of the authorization "code" to a
certain client can be validated in a reliable way (see
Section 5.2.4.4).

o Use short expiry time for authorization "codes" (Section 5.1.5.3).

o The authorization server should enforce a one-time usage
restriction (see Section 5.1.5.4).

o If an authorization server observes multiple attempts to redeem an
authorization "code", the authorization server may want to revoke
all tokens granted based on the authorization "code" (see
Section 5.2.1.1).

o In the absence of these countermeasures, reducing scope
(Section 5.1.5.1) and expiry time (Section 5.1.5.3) for access
tokens can be used to reduce the damage in case of leaks.

o The client server may reload the target page of the redirect URI
in order to automatically clean up the browser cache.

4.4.1.2. Threat: Obtaining Authorization "codes" from Authorization
Server Database

This threat is applicable if the authorization server stores
authorization "codes" as handles in a database. An attacker may
obtain authorization "codes" from the authorization server's database
by gaining access to the database or launching a SQL injection
attack.

Impact: Disclosure of all authorization "codes", most likely along
with the respective "redirect_uri" and "client_id" values.

Countermeasures:

o Best practices for credential storage protection should be
employed (Section 5.1.4.1).

o Enforce system security measures (Section 5.1.4.1.1).

Lodderstedt, et al. Informational [Page 26]

160 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

o Store access token hashes only (Section 5.1.4.1.3).

o Enforce standard SQL injection countermeasures
(Section 5.1.4.1.2).

4.4.1.3. Threat: Online Guessing of Authorization "codes"

An attacker may try to guess valid authorization "code" values and
send the guessed code value using the grant type "code" in order to
obtain a valid access token.

Impact: Disclosure of a single access token and probably also an
associated refresh token.

Countermeasures:

o Handle-based tokens must use high entropy (Section 5.1.4.2.2).

o Assertion-based tokens should be signed (Section 5.1.5.9).

o Authenticate the client; this adds another value that the attacker
has to guess (Section 5.2.3.4).

o Bind the authorization "code" to the redirect URI; this adds
another value that the attacker has to guess (Section 5.2.4.5).

o Use short expiry time for tokens (Section 5.1.5.3).

4.4.1.4. Threat: Malicious Client Obtains Authorization

A malicious client could pretend to be a valid client and obtain an
access authorization in this way. The malicious client could even
utilize screen-scraping techniques in order to simulate a user's
consent in the authorization flow.

Assumption: It is not the task of the authorization server to protect
the end-user's device from malicious software. This is the
responsibility of the platform running on the particular device,
probably in cooperation with other components of the respective
ecosystem (e.g., an application management infrastructure). The sole
responsibility of the authorization server is to control access to
the end-user's resources maintained in resource servers and to
prevent unauthorized access to them via the OAuth protocol. Based on
this assumption, the following countermeasures are available to cope
with the threat.

Lodderstedt, et al. Informational [Page 27]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 161

RFC 6819 OAuth 2.0 Security January 2013

Countermeasures:

o The authorization server should authenticate the client, if
possible (see Section 5.2.3.4). Note: The authentication takes
place after the end user has authorized the access.

o The authorization server should validate the client's redirect URI
against the pre-registered redirect URI, if one exists (see
Section 5.2.3.5). Note: An invalid redirect URI indicates an
invalid client, whereas a valid redirect URI does not necessarily
indicate a valid client. The level of confidence depends on the
client type. For web applications, the level of confidence is
high, since the redirect URI refers to the globally unique network
endpoint of this application, whose fully qualified domain name
(FQDN) is also validated using HTTPS server authentication by the
user agent. In contrast, for native clients, the redirect URI
typically refers to device local resources, e.g., a custom scheme.
So, a malicious client on a particular device can use the valid
redirect URI the legitimate client uses on all other devices.

o After authenticating the end user, the authorization server should
ask him/her for consent. In this context, the authorization
server should explain to the end user the purpose, scope, and
duration of the authorization the client asked for. Moreover, the
authorization server should show the user any identity information
it has for that client. It is up to the user to validate the
binding of this data to the particular application (e.g., Name)
and to approve the authorization request (see Section 5.2.4.3).

o The authorization server should not perform automatic
re-authorizations for clients it is unable to reliably
authenticate or validate (see Section 5.2.4.1).

o If the authorization server automatically authenticates the end
user, it may nevertheless require some user input in order to
prevent screen scraping. Examples are CAPTCHAs (Completely
Automated Public Turing tests to tell Computers and Humans Apart)
or other multi-factor authentication techniques such as random
questions, token code generators, etc.

o The authorization server may also limit the scope of tokens it
issues to clients it cannot reliably authenticate (see
Section 5.1.5.1).

Lodderstedt, et al. Informational [Page 28]

162 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

4.4.1.5. Threat: Authorization "code" Phishing

A hostile party could impersonate the client site and get access to
the authorization "code". This could be achieved using DNS or ARP
spoofing. This applies to clients, which are web applications; thus,
the redirect URI is not local to the host where the user's browser is
running.

Impact: This affects web applications and may lead to a disclosure of
authorization "codes" and, potentially, the corresponding access and
refresh tokens.

Countermeasures:

It is strongly recommended that one of the following countermeasures
be utilized in order to prevent this attack:

o The redirect URI of the client should point to an HTTPS-protected
endpoint, and the browser should be utilized to authenticate this
redirect URI using server authentication (see Section 5.1.2).

o The authorization server should require that the client be
authenticated, i.e., confidential client, so the binding of the
authorization "code" to a certain client can be validated in a
reliable way (see Section 5.2.4.4).

4.4.1.6. Threat: User Session Impersonation

A hostile party could impersonate the client site and impersonate the
user's session on this client. This could be achieved using DNS or
ARP spoofing. This applies to clients, which are web applications;
thus, the redirect URI is not local to the host where the user's
browser is running.

Impact: An attacker who intercepts the authorization "code" as it is
sent by the browser to the callback endpoint can gain access to
protected resources by submitting the authorization "code" to the
client. The client will exchange the authorization "code" for an
access token and use the access token to access protected resources
for the benefit of the attacker, delivering protected resources to
the attacker, or modifying protected resources as directed by the
attacker. If OAuth is used by the client to delegate authentication
to a social site (e.g., as in the implementation of a "Login" button
on a third-party social network site), the attacker can use the
intercepted authorization "code" to log into the client as the user.

Lodderstedt, et al. Informational [Page 29]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 163

RFC 6819 OAuth 2.0 Security January 2013

Note: Authenticating the client during authorization "code" exchange
will not help to detect such an attack, as it is the legitimate
client that obtains the tokens.

Countermeasures:

o In order to prevent an attacker from impersonating the end-user's
session, the redirect URI of the client should point to an HTTPS
protected endpoint, and the browser should be utilized to
authenticate this redirect URI using server authentication (see
Section 5.1.2).

4.4.1.7. Threat: Authorization "code" Leakage through Counterfeit
Client

The attacker leverages the authorization "code" grant type in an
attempt to get another user (victim) to log in, authorize access to
his/her resources, and subsequently obtain the authorization "code"
and inject it into a client application using the attacker's account.
The goal is to associate an access authorization for resources of the
victim with the user account of the attacker on a client site.

The attacker abuses an existing client application and combines it
with his own counterfeit client web site. The attacker depends on
the victim expecting the client application to request access to a
certain resource server. The victim, seeing only a normal request
from an expected application, approves the request. The attacker
then uses the victim's authorization to gain access to the
information unknowingly authorized by the victim.

The attacker conducts the following flow:

1. The attacker accesses the client web site (or application) and
initiates data access to a particular resource server. The
client web site in turn initiates an authorization request to the
resource server's authorization server. Instead of proceeding
with the authorization process, the attacker modifies the
authorization server end-user authorization URL as constructed by
the client to include a redirect URI parameter referring to a web
site under his control (attacker's web site).

2. The attacker tricks another user (the victim) into opening that
modified end-user authorization URI and authorizing access (e.g.,
via an email link or blog link). The way the attacker achieves
this goal is out of scope.

3. Having clicked the link, the victim is requested to authenticate
and authorize the client site to have access.

Lodderstedt, et al. Informational [Page 30]

164 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

4. After completion of the authorization process, the authorization
server redirects the user agent to the attacker's web site
instead of the original client web site.

5. The attacker obtains the authorization "code" from his web site
by means that are out of scope of this document.

6. He then constructs a redirect URI to the target web site (or
application) based on the original authorization request's
redirect URI and the newly obtained authorization "code", and
directs his user agent to this URL. The authorization "code" is
injected into the original client site (or application).

7. The client site uses the authorization "code" to fetch a token
from the authorization server and associates this token with the
attacker's user account on this site.

8. The attacker may now access the victim's resources using the
client site.

Impact: The attacker gains access to the victim's resources as
associated with his account on the client site.

Countermeasures:

o The attacker will need to use another redirect URI for its
authorization process rather than the target web site because it
needs to intercept the flow. So, if the authorization server
associates the authorization "code" with the redirect URI of a
particular end-user authorization and validates this redirect URI
with the redirect URI passed to the token's endpoint, such an
attack is detected (see Section 5.2.4.5).

o The authorization server may also enforce the usage and validation
of pre-registered redirect URIs (see Section 5.2.3.5). This will
allow for early recognition of authorization "code" disclosure to
counterfeit clients.

o For native applications, one could also consider using deployment-
specific client ids and secrets (see Section 5.2.3.4), along with
the binding of authorization "codes" to "client_ids" (see
Section 5.2.4.4) to detect such an attack because the attacker
does not have access to the deployment-specific secret. Thus, he
will not be able to exchange the authorization "code".

Lodderstedt, et al. Informational [Page 31]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 165

RFC 6819 OAuth 2.0 Security January 2013

o The client may consider using other flows that are not vulnerable
to this kind of attack, such as the implicit grant type (see
Section 4.4.2) or resource owner password credentials (see
Section 4.4.3).

4.4.1.8. Threat: CSRF Attack against redirect-uri

Cross-site request forgery (CSRF) is a web-based attack whereby HTTP
requests are transmitted from a user that the web site trusts or has
authenticated (e.g., via HTTP redirects or HTML forms). CSRF attacks
on OAuth approvals can allow an attacker to obtain authorization to
OAuth protected resources without the consent of the user.

This attack works against the redirect URI used in the authorization
"code" flow. An attacker could authorize an authorization "code" to
their own protected resources on an authorization server. He then
aborts the redirect flow back to the client on his device and tricks
the victim into executing the redirect back to the client. The
client receives the redirect, fetches the token(s) from the
authorization server, and associates the victim's client session with
the resources accessible using the token.

Impact: The user accesses resources on behalf of the attacker. The
effective impact depends on the type of resource accessed. For
example, the user may upload private items to an attacker's
resources. Or, when using OAuth in 3rd-party login scenarios, the
user may associate his client account with the attacker's identity at
the external Identity Provider. In this way, the attacker could
easily access the victim's data at the client by logging in from
another device with his credentials at the external Identity
Provider.

Countermeasures:

o The "state" parameter should be used to link the authorization
request with the redirect URI used to deliver the access token
(Section 5.3.5).

o Client developers and end users can be educated to not follow
untrusted URLs.

Lodderstedt, et al. Informational [Page 32]

166 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

4.4.1.9. Threat: Clickjacking Attack against Authorization

With clickjacking, a malicious site loads the target site in a
transparent iFrame (see [iFrame]) overlaid on top of a set of dummy
buttons that are carefully constructed to be placed directly under
important buttons on the target site. When a user clicks a visible
button, they are actually clicking a button (such as an "Authorize"
button) on the hidden page.

Impact: An attacker can steal a user's authentication credentials and
access their resources.

Countermeasures:

o For newer browsers, avoidance of iFrames during authorization can
be enforced on the server side by using the X-FRAME-OPTIONS header
(Section 5.2.2.6).

o For older browsers, JavaScript frame-busting (see [Framebusting])
techniques can be used but may not be effective in all browsers.

4.4.1.10. Threat: Resource Owner Impersonation

When a client requests access to protected resources, the
authorization flow normally involves the resource owner's explicit
response to the access request, either granting or denying access to
the protected resources. A malicious client can exploit knowledge of
the structure of this flow in order to gain authorization without the
resource owner's consent, by transmitting the necessary requests
programmatically and simulating the flow against the authorization
server. That way, the client may gain access to the victim's
resources without her approval. An authorization server will be
vulnerable to this threat if it uses non-interactive authentication
mechanisms or splits the authorization flow across multiple pages.

The malicious client might embed a hidden HTML user agent, interpret
the HTML forms sent by the authorization server, and automatically
send the corresponding form HTTP POST requests. As a prerequisite,
the attacker must be able to execute the authorization process in the
context of an already-authenticated session of the resource owner
with the authorization server. There are different ways to achieve
this:

o The malicious client could abuse an existing session in an
external browser or cross-browser cookies on the particular
device.

Lodderstedt, et al. Informational [Page 33]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 167

RFC 6819 OAuth 2.0 Security January 2013

o The malicious client could also request authorization for an
initial scope acceptable to the user and then silently abuse the
resulting session in his browser instance to "silently" request
another scope.

o Alternatively, the attacker might exploit an authorization
server's ability to authenticate the resource owner automatically
and without user interactions, e.g., based on certificates.

In all cases, such an attack is limited to clients running on the
victim's device, either within the user agent or as a native app.

Please note: Such attacks cannot be prevented using CSRF
countermeasures, since the attacker just "executes" the URLs as
prepared by the authorization server including any nonce, etc.

Countermeasures:

Authorization servers should decide, based on an analysis of the risk
associated with this threat, whether to detect and prevent this
threat.

In order to prevent such an attack, the authorization server may
force a user interaction based on non-predictable input values as
part of the user consent approval. The authorization server could

o combine password authentication and user consent in a single form,

o make use of CAPTCHAs, or

o use one-time secrets sent out of band to the resource owner (e.g.,
via text or instant message).

Alternatively, in order to allow the resource owner to detect abuse,
the authorization server could notify the resource owner of any
approval by appropriate means, e.g., text or instant message, or
email.

4.4.1.11. Threat: DoS Attacks That Exhaust Resources

If an authorization server includes a nontrivial amount of entropy in
authorization "codes" or access tokens (limiting the number of
possible codes/tokens) and automatically grants either without user
intervention and has no limit on codes or access tokens per user, an
attacker could exhaust the pool of authorization "codes" by
repeatedly directing the user's browser to request authorization
"codes" or access tokens.

Lodderstedt, et al. Informational [Page 34]

168 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

Countermeasures:

o The authorization server should consider limiting the number of
access tokens granted per user.

o The authorization server should include a nontrivial amount of
entropy in authorization "codes".

4.4.1.12. Threat: DoS Using Manufactured Authorization "codes"

An attacker who owns a botnet can locate the redirect URIs of clients
that listen on HTTP, access them with random authorization "codes",
and cause a large number of HTTPS connections to be concentrated onto
the authorization server. This can result in a denial-of-service
(DoS) attack on the authorization server.

This attack can still be effective even when CSRF defense/the "state"
parameter (see Section 4.4.1.8) is deployed on the client side. With
such a defense, the attacker might need to incur an additional HTTP
request to obtain a valid CSRF code/"state" parameter. This
apparently cuts down the effectiveness of the attack by a factor of
2. However, if the HTTPS/HTTP cost ratio is higher than 2 (the cost
factor is estimated to be around 3.5x at [SSL-Latency]), the attacker
still achieves a magnification of resource utilization at the expense
of the authorization server.

Impact: There are a few effects that the attacker can accomplish with
this OAuth flow that they cannot easily achieve otherwise.

1. Connection laundering: With the clients as the relay between the
attacker and the authorization server, the authorization server
learns little or no information about the identity of the
attacker. Defenses such as rate-limiting on the offending
attacker machines are less effective because it is difficult to
identify the attacking machines. Although an attacker could also
launder its connections through an anonymizing system such as
Tor, the effectiveness of that approach depends on the capacity
of the anonymizing system. On the other hand, a potentially
large number of OAuth clients could be utilized for this attack.

2. Asymmetric resource utilization: The attacker incurs the cost of
an HTTP connection and causes an HTTPS connection to be made on
the authorization server; the attacker can coordinate the timing
of such HTTPS connections across multiple clients relatively
easily. Although the attacker could achieve something similar,
say, by including an iFrame pointing to the HTTPS URL of the
authorization server in an HTTP web page and luring web users to
visit that page, timing attacks using such a scheme may be more

Lodderstedt, et al. Informational [Page 35]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 169

RFC 6819 OAuth 2.0 Security January 2013

difficult, as it seems nontrivial to synchronize a large number
of users to simultaneously visit a particular site under the
attacker's control.

Countermeasures:

o Though not a complete countermeasure by themselves, CSRF defense
and the "state" parameter created with secure random codes should
be deployed on the client side. The client should forward the
authorization "code" to the authorization server only after both
the CSRF token and the "state" parameter are validated.

o If the client authenticates the user, either through a single-
sign-on protocol or through local authentication, the client
should suspend the access by a user account if the number of
invalid authorization "codes" submitted by this user exceeds a
certain threshold.

o The authorization server should send an error response to the
client reporting an invalid authorization "code" and rate-limit or
disallow connections from clients whose number of invalid requests
exceeds a threshold.

4.4.1.13. Threat: Code Substitution (OAuth Login)

An attacker could attempt to log into an application or web site
using a victim's identity. Applications relying on identity data
provided by an OAuth protected service API to login users are
vulnerable to this threat. This pattern can be found in so-called
"social login" scenarios.

As a prerequisite, a resource server offers an API to obtain personal
information about a user that could be interpreted as having obtained
a user identity. In this sense, the client is treating the resource
server API as an "identity" API. A client utilizes OAuth to obtain
an access token for the identity API. It then queries the identity
API for an identifier and uses it to look up its internal user
account data (login). The client assumes that, because it was able
to obtain information about the user, the user has been
authenticated.

If the client uses the grant type "code", the attacker needs to
gather a valid authorization "code" of the respective victim from the
same Identity Provider used by the target client application. The
attacker tricks the victim into logging into a malicious app (which
may appear to be legitimate to the Identity Provider) using the same
Identity Provider as the target application. This results in the
Identity Provider's authorization server issuing an authorization

Lodderstedt, et al. Informational [Page 36]

170 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

"code" for the respective identity API. The malicious app then sends
this code to the attacker, which in turn triggers a login process
within the target application. The attacker now manipulates the
authorization response and substitutes their code (bound to their
identity) for the victim's code. This code is then exchanged by the
client for an access token, which in turn is accepted by the identity
API, since the audience, with respect to the resource server, is
correct. But since the identifier returned by the identity API is
determined by the identity in the access token (issued based on the
victim's code), the attacker is logged into the target application
under the victim's identity.

Impact: The attacker gains access to an application and user-specific
data within the application.

Countermeasures:

o All clients must indicate their client ids with every request to
exchange an authorization "code" for an access token. The
authorization server must validate whether the particular
authorization "code" has been issued to the particular client. If
possible, the client shall be authenticated beforehand.

o Clients should use an appropriate protocol, such as OpenID (cf.
[OPENID]) or SAML (cf. [OASIS.sstc-saml-bindings-1.1]) to
implement user login. Both support audience restrictions on
clients.

4.4.2. Implicit Grant

In the implicit grant type flow, the access token is directly
returned to the client as a fragment part of the redirect URI. It is
assumed that the token is not sent to the redirect URI target, as
HTTP user agents do not send the fragment part of URIs to HTTP
servers. Thus, an attacker cannot eavesdrop the access token on this
communication path, and the token cannot leak through HTTP referrer
headers.

4.4.2.1. Threat: Access Token Leak in Transport/Endpoints

This token might be eavesdropped by an attacker. The token is sent
from the server to the client via a URI fragment of the redirect URI.
If the communication is not secured or the endpoint is not secured,
the token could be leaked by parsing the returned URI.

Impact: The attacker would be able to assume the same rights granted
by the token.

Lodderstedt, et al. Informational [Page 37]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 171

RFC 6819 OAuth 2.0 Security January 2013

Countermeasures:

o The authorization server should ensure confidentiality (e.g.,
using TLS) of the response from the authorization server to the
client (see Section 5.1.1).

4.4.2.2. Threat: Access Token Leak in Browser History

An attacker could obtain the token from the browser's history. Note
that this means the attacker needs access to the particular device.

Countermeasures:

o Use short expiry time for tokens (see Section 5.1.5.3). Reduced
scope of the token may reduce the impact of that attack (see
Section 5.1.5.1).

o Make responses non-cacheable.

4.4.2.3. Threat: Malicious Client Obtains Authorization

A malicious client could attempt to obtain a token by fraud.

The same countermeasures as for Section 4.4.1.4 are applicable,
except client authentication.

4.4.2.4. Threat: Manipulation of Scripts

A hostile party could act as the client web server and replace or
modify the actual implementation of the client (script). This could
be achieved using DNS or ARP spoofing. This applies to clients
implemented within the web browser in a scripting language.

Impact: The attacker could obtain user credential information and
assume the full identity of the user.

Countermeasures:

o The authorization server should authenticate the server from which
scripts are obtained (see Section 5.1.2).

o The client should ensure that scripts obtained have not been
altered in transport (see Section 5.1.1).

Lodderstedt, et al. Informational [Page 38]

172 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

o Introduce one-time, per-use secrets (e.g., "client_secret") values
that can only be used by scripts in a small time window once
loaded from a server. The intention would be to reduce the
effectiveness of copying client-side scripts for re-use in an
attacker's modified code.

4.4.2.5. Threat: CSRF Attack against redirect-uri

CSRF attacks (see Section 4.4.1.8) also work against the redirect URI
used in the implicit grant flow. An attacker could acquire an access
token to their own protected resources. He could then construct a
redirect URI and embed their access token in that URI. If he can
trick the user into following the redirect URI and the client does
not have protection against this attack, the user may have the
attacker's access token authorized within their client.

Impact: The user accesses resources on behalf of the attacker. The
effective impact depends on the type of resource accessed. For
example, the user may upload private items to an attacker's
resources. Or, when using OAuth in 3rd-party login scenarios, the
user may associate his client account with the attacker's identity at
the external Identity Provider. In this way, the attacker could
easily access the victim's data at the client by logging in from
another device with his credentials at the external Identity
Provider.

Countermeasures:

o The "state" parameter should be used to link the authorization
request with the redirect URI used to deliver the access token.
This will ensure that the client is not tricked into completing
any redirect callback unless it is linked to an authorization
request initiated by the client. The "state" parameter should not
be guessable, and the client should be capable of keeping the
"state" parameter secret.

o Client developers and end users can be educated to not follow
untrusted URLs.

4.4.2.6. Threat: Token Substitution (OAuth Login)

An attacker could attempt to log into an application or web site
using a victim's identity. Applications relying on identity data
provided by an OAuth protected service API to login users are
vulnerable to this threat. This pattern can be found in so-called
"social login" scenarios.

Lodderstedt, et al. Informational [Page 39]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 173

RFC 6819 OAuth 2.0 Security January 2013

As a prerequisite, a resource server offers an API to obtain personal
information about a user that could be interpreted as having obtained
a user identity. In this sense, the client is treating the resource
server API as an "identity" API. A client utilizes OAuth to obtain
an access token for the identity API. It then queries the identity
API for an identifier and uses it to look up its internal user
account data (login). The client assumes that, because it was able
to obtain information about the user, the user has been
authenticated.

To succeed, the attacker needs to gather a valid access token of the
respective victim from the same Identity Provider used by the target
client application. The attacker tricks the victim into logging into
a malicious app (which may appear to be legitimate to the Identity
Provider) using the same Identity Provider as the target application.
This results in the Identity Provider's authorization server issuing
an access token for the respective identity API. The malicious app
then sends this access token to the attacker, which in turn triggers
a login process within the target application. The attacker now
manipulates the authorization response and substitutes their access
token (bound to their identity) for the victim's access token. This
token is accepted by the identity API, since the audience, with
respect to the resource server, is correct. But since the identifier
returned by the identity API is determined by the identity in the
access token, the attacker is logged into the target application
under the victim's identity.

Impact: The attacker gains access to an application and user-specific
data within the application.

Countermeasures:

o Clients should use an appropriate protocol, such as OpenID (cf.
[OPENID]) or SAML (cf. [OASIS.sstc-saml-bindings-1.1]) to
implement user login. Both support audience restrictions on
clients.

4.4.3. Resource Owner Password Credentials

The resource owner password credentials grant type (see [RFC6749],
Section 4.3), often used for legacy/migration reasons, allows a
client to request an access token using an end-user's user id and
password along with its own credential. This grant type has higher
risk because it maintains the UID/password anti-pattern.
Additionally, because the user does not have control over the
authorization process, clients using this grant type are not limited

Lodderstedt, et al. Informational [Page 40]

174 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

by scope but instead have potentially the same capabilities as the
user themselves. As there is no authorization step, the ability to
offer token revocation is bypassed.

Because passwords are often used for more than 1 service, this
anti-pattern may also put at risk whatever else is accessible with
the supplied credential. Additionally, any easily derived equivalent
(e.g., joe@example.com and joe@example.net) might easily allow
someone to guess that the same password can be used elsewhere.

Impact: The resource server can only differentiate scope based on the
access token being associated with a particular client. The client
could also acquire long-lived tokens and pass them up to an
attacker's web service for further abuse. The client, eavesdroppers,
or endpoints could eavesdrop the user id and password.

Countermeasures:

o Except for migration reasons, minimize use of this grant type.

o The authorization server should validate the client id associated
with the particular refresh token with every refresh request
(Section 5.2.2.2).

o As per the core OAuth specification, the authorization server must
ensure that these transmissions are protected using transport-
layer mechanisms such as TLS (see Section 5.1.1).

o Rather than encouraging users to use a UID and password, service
providers should instead encourage users not to use the same
password for multiple services.

o Limit use of resource owner password credential grants to
scenarios where the client application and the authorizing service
are from the same organization.

4.4.3.1. Threat: Accidental Exposure of Passwords at Client Site

If the client does not provide enough protection, an attacker or
disgruntled employee could retrieve the passwords for a user.

Countermeasures:

o Use other flows that do not rely on the client's cooperation for
secure resource owner credential handling.

o Use digest authentication instead of plaintext credential
processing.

Lodderstedt, et al. Informational [Page 41]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 175

RFC 6819 OAuth 2.0 Security January 2013

o Obfuscate passwords in logs.

4.4.3.2. Threat: Client Obtains Scopes without End-User Authorization

All interaction with the resource owner is performed by the client.
Thus it might, intentionally or unintentionally, happen that the
client obtains a token with scope unknown for, or unintended by, the
resource owner. For example, the resource owner might think the
client needs and acquires read-only access to its media storage only
but the client tries to acquire an access token with full access
permissions.

Countermeasures:

o Use other flows that do not rely on the client's cooperation for
resource owner interaction.

o The authorization server may generally restrict the scope of
access tokens (Section 5.1.5.1) issued by this flow. If the
particular client is trustworthy and can be authenticated in a
reliable way, the authorization server could relax that
restriction. Resource owners may prescribe (e.g., in their
preferences) what the maximum scope is for clients using this
flow.

o The authorization server could notify the resource owner by an
appropriate medium, e.g., email, of the grant issued (see
Section 5.1.3).

4.4.3.3. Threat: Client Obtains Refresh Token through Automatic
Authorization

All interaction with the resource owner is performed by the client.
Thus it might, intentionally or unintentionally, happen that the
client obtains a long-term authorization represented by a refresh
token even if the resource owner did not intend so.

Countermeasures:

o Use other flows that do not rely on the client's cooperation for
resource owner interaction.

o The authorization server may generally refuse to issue refresh
tokens in this flow (see Section 5.2.2.1). If the particular
client is trustworthy and can be authenticated in a reliable way
(see client authentication), the authorization server could relax

Lodderstedt, et al. Informational [Page 42]

176 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

that restriction. Resource owners may allow or deny (e.g., in
their preferences) the issuing of refresh tokens using this flow
as well.

o The authorization server could notify the resource owner by an
appropriate medium, e.g., email, of the refresh token issued (see
Section 5.1.3).

4.4.3.4. Threat: Obtaining User Passwords on Transport

An attacker could attempt to eavesdrop the transmission of end-user
credentials with the grant type "password" between the client and
server.

Impact: Disclosure of a single end-user's password.

Countermeasures:

o Ensure confidentiality of requests (Section 5.1.1).

o Use alternative authentication means that do not require the
sending of plaintext credentials over the wire (e.g., Hash-based
Message Authentication Code).

4.4.3.5. Threat: Obtaining User Passwords from Authorization Server
Database

An attacker may obtain valid username/password combinations from the
authorization server's database by gaining access to the database or
launching a SQL injection attack.

Impact: Disclosure of all username/password combinations. The impact
may exceed the domain of the authorization server, since many users
tend to use the same credentials on different services.

Countermeasures:

o Enforce credential storage protection best practices
(Section 5.1.4.1).

4.4.3.6. Threat: Online Guessing

An attacker may try to guess valid username/password combinations
using the grant type "password".

Impact: Revelation of a single username/password combination.

Lodderstedt, et al. Informational [Page 43]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 177

RFC 6819 OAuth 2.0 Security January 2013

Countermeasures:

o Utilize secure password policy (Section 5.1.4.2.1).

o Lock accounts (Section 5.1.4.2.3).

o Use tar pit (Section 5.1.4.2.4).

o Use CAPTCHAs (Section 5.1.4.2.5).

o Consider not using the grant type "password".

o Client authentication (see Section 5.2.3) will provide another
authentication factor and thus hinder the attack.

4.4.4. Client Credentials

Client credentials (see [RFC6749], Section 3) consist of an
identifier (not secret) combined with an additional means (such as a
matching client secret) of authenticating a client. The threats to
this grant type are similar to those described in Section 4.4.3.

4.5. Refreshing an Access Token

4.5.1. Threat: Eavesdropping Refresh Tokens from Authorization Server

An attacker may eavesdrop refresh tokens when they are transmitted
from the authorization server to the client.

Countermeasures:

o As per the core OAuth spec, the authorization servers must ensure
that these transmissions are protected using transport-layer
mechanisms such as TLS (see Section 5.1.1).

o If end-to-end confidentiality cannot be guaranteed, reducing scope
(see Section 5.1.5.1) and expiry time (see Section 5.1.5.3) for
issued access tokens can be used to reduce the damage in case of
leaks.

4.5.2. Threat: Obtaining Refresh Token from Authorization Server
Database

This threat is applicable if the authorization server stores refresh
tokens as handles in a database. An attacker may obtain refresh
tokens from the authorization server's database by gaining access to
the database or launching a SQL injection attack.

Lodderstedt, et al. Informational [Page 44]

178 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

Impact: Disclosure of all refresh tokens.

Countermeasures:

o Enforce credential storage protection best practices
(Section 5.1.4.1).

o Bind token to client id, if the attacker cannot obtain the
required id and secret (Section 5.1.5.8).

4.5.3. Threat: Obtaining Refresh Token by Online Guessing

An attacker may try to guess valid refresh token values and send it
using the grant type "refresh_token" in order to obtain a valid
access token.

Impact: Exposure of a single refresh token and derivable access
tokens.

Countermeasures:

o For handle-based designs (Section 5.1.4.2.2).

o For assertion-based designs (Section 5.1.5.9).

o Bind token to client id, because the attacker would guess the
matching client id, too (see Section 5.1.5.8).

o Authenticate the client; this adds another element that the
attacker has to guess (see Section 5.2.3.4).

4.5.4. Threat: Refresh Token Phishing by Counterfeit Authorization
Server

An attacker could try to obtain valid refresh tokens by proxying
requests to the authorization server. Given the assumption that the
authorization server URL is well-known at development time or can at
least be obtained from a well-known resource server, the attacker
must utilize some kind of spoofing in order to succeed.

Countermeasures:

o Utilize server authentication (as described in Section 5.1.2).

Lodderstedt, et al. Informational [Page 45]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 179

RFC 6819 OAuth 2.0 Security January 2013

4.6. Accessing Protected Resources

4.6.1. Threat: Eavesdropping Access Tokens on Transport

An attacker could try to obtain a valid access token on transport
between the client and resource server. As access tokens are shared
secrets between the authorization server and resource server, they
should be treated with the same care as other credentials (e.g., end-
user passwords).

Countermeasures:

o Access tokens sent as bearer tokens should not be sent in the
clear over an insecure channel. As per the core OAuth spec,
transmission of access tokens must be protected using transport-
layer mechanisms such as TLS (see Section 5.1.1).

o A short lifetime reduces impact in case tokens are compromised
(see Section 5.1.5.3).

o The access token can be bound to a client's identifier and require
the client to prove legitimate ownership of the token to the
resource server (see Section 5.4.2).

4.6.2. Threat: Replay of Authorized Resource Server Requests

An attacker could attempt to replay valid requests in order to obtain
or to modify/destroy user data.

Countermeasures:

o The resource server should utilize transport security measures
(e.g., TLS) in order to prevent such attacks (see Section 5.1.1).
This would prevent the attacker from capturing valid requests.

o Alternatively, the resource server could employ signed requests
(see Section 5.4.3) along with nonces and timestamps in order to
uniquely identify requests. The resource server should detect and
refuse every replayed request.

4.6.3. Threat: Guessing Access Tokens

Where the token is a handle, the attacker may attempt to guess the
access token values based on knowledge they have from other access
tokens.

Impact: Access to a single user's data.

Lodderstedt, et al. Informational [Page 46]

180 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

Countermeasures:

o Handle tokens should have a reasonable level of entropy (see
Section 5.1.4.2.2) in order to make guessing a valid token value
infeasible.

o Assertion (or self-contained token) token contents should be
protected by a digital signature (see Section 5.1.5.9).

o Security can be further strengthened by using a short access token
duration (see Sections 5.1.5.2 and 5.1.5.3).

4.6.4. Threat: Access Token Phishing by Counterfeit Resource Server

An attacker may pretend to be a particular resource server and to
accept tokens from a particular authorization server. If the client
sends a valid access token to this counterfeit resource server, the
server in turn may use that token to access other services on behalf
of the resource owner.

Countermeasures:

o Clients should not make authenticated requests with an access
token to unfamiliar resource servers, regardless of the presence
of a secure channel. If the resource server URL is well-known to
the client, it may authenticate the resource servers (see
Section 5.1.2).

o Associate the endpoint URL of the resource server the client
talked to with the access token (e.g., in an audience field) and
validate the association at a legitimate resource server. The
endpoint URL validation policy may be strict (exact match) or more
relaxed (e.g., same host). This would require telling the
authorization server about the resource server endpoint URL in the
authorization process.

o Associate an access token with a client and authenticate the
client with resource server requests (typically via a signature,
in order to not disclose a secret to a potential attacker). This
prevents the attack because the counterfeit server is assumed to
lack the capability to correctly authenticate on behalf of the
legitimate client to the resource server (Section 5.4.2).

o Restrict the token scope (see Section 5.1.5.1) and/or limit the
token to a certain resource server (Section 5.1.5.5).

Lodderstedt, et al. Informational [Page 47]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 181

RFC 6819 OAuth 2.0 Security January 2013

4.6.5. Threat: Abuse of Token by Legitimate Resource Server or Client

A legitimate resource server could attempt to use an access token to
access another resource server. Similarly, a client could try to use
a token obtained for one server on another resource server.

Countermeasures:

o Tokens should be restricted to particular resource servers (see
Section 5.1.5.5).

4.6.6. Threat: Leak of Confidential Data in HTTP Proxies

An OAuth HTTP authentication scheme as discussed in [RFC6749] is
optional. However, [RFC2616] relies on the Authorization and
WWW-Authenticate headers to distinguish authenticated content so that
it can be protected. Proxies and caches, in particular, may fail to
adequately protect requests not using these headers. For example,
private authenticated content may be stored in (and thus be
retrievable from) publicly accessible caches.

Countermeasures:

o Clients and resource servers not using an OAuth HTTP
authentication scheme (see Section 5.4.1) should take care to use
Cache-Control headers to minimize the risk that authenticated
content is not protected. Such clients should send a
Cache-Control header containing the "no-store" option [RFC2616].
Resource server success (2XX status) responses to these requests
should contain a Cache-Control header with the "private" option
[RFC2616].

o Reducing scope (see Section 5.1.5.1) and expiry time
(Section 5.1.5.3) for access tokens can be used to reduce the
damage in case of leaks.

4.6.7. Threat: Token Leakage via Log Files and HTTP Referrers

If access tokens are sent via URI query parameters, such tokens may
leak to log files and the HTTP "referer".

Countermeasures:

o Use Authorization headers or POST parameters instead of URI
request parameters (see Section 5.4.1).

o Set logging configuration appropriately.

Lodderstedt, et al. Informational [Page 48]

182 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

o Prevent unauthorized persons from access to system log files (see
Section 5.1.4.1.1).

o Abuse of leaked access tokens can be prevented by enforcing
authenticated requests (see Section 5.4.2).

o The impact of token leakage may be reduced by limiting scope (see
Section 5.1.5.1) and duration (see Section 5.1.5.3) and by
enforcing one-time token usage (see Section 5.1.5.4).

5. Security Considerations

This section describes the countermeasures as recommended to mitigate
the threats described in Section 4.

5.1. General

This section covers considerations that apply generally across all
OAuth components (client, resource server, token server, and user
agents).

5.1.1. Ensure Confidentiality of Requests

This is applicable to all requests sent from the client to the
authorization server or resource server. While OAuth provides a
mechanism for verifying the integrity of requests, it provides no
guarantee of request confidentiality. Unless further precautions are
taken, eavesdroppers will have full access to request content and may
be able to mount interception or replay attacks by using the contents
of requests, e.g., secrets or tokens.

Attacks can be mitigated by using transport-layer mechanisms such as
TLS [RFC5246]. A virtual private network (VPN), e.g., based on IPsec
VPNs [RFC4301], may be considered as well.

Note: This document assumes end-to-end TLS protected connections
between the respective protocol entities. Deployments deviating from
this assumption by offloading TLS in between (e.g., on the data
center edge) must refine this threat model in order to account for
the additional (mainly insider) threat this may cause.

This is a countermeasure against the following threats:

o Replay of access tokens obtained on the token's endpoint or the
resource server's endpoint

o Replay of refresh tokens obtained on the token's endpoint

Lodderstedt, et al. Informational [Page 49]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 183

RFC 6819 OAuth 2.0 Security January 2013

o Replay of authorization "codes" obtained on the token's endpoint
(redirect?)

o Replay of user passwords and client secrets

5.1.2. Utilize Server Authentication

HTTPS server authentication or similar means can be used to
authenticate the identity of a server. The goal is to reliably bind
the fully qualified domain name of the server to the public key
presented by the server during connection establishment (see
[RFC2818]).

The client should validate the binding of the server to its domain
name. If the server fails to prove that binding, the communication
is considered a man-in-the-middle attack. This security measure
depends on the certification authorities the client trusts for that
purpose. Clients should carefully select those trusted CAs and
protect the storage for trusted CA certificates from modifications.

This is a countermeasure against the following threats:

o Spoofing

o Proxying

o Phishing by counterfeit servers

5.1.3. Always Keep the Resource Owner Informed

Transparency to the resource owner is a key element of the OAuth
protocol. The user should always be in control of the authorization
processes and get the necessary information to make informed
decisions. Moreover, user involvement is a further security
countermeasure. The user can probably recognize certain kinds of
attacks better than the authorization server. Information can be
presented/exchanged during the authorization process, after the
authorization process, and every time the user wishes to get informed
by using techniques such as:

o User consent forms.

o Notification messages (e.g., email, SMS, ...). Note that
notifications can be a phishing vector. Messages should be such
that look-alike phishing messages cannot be derived from them.

Lodderstedt, et al. Informational [Page 50]

184 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

o Activity/event logs.

o User self-care applications or portals.

5.1.4. Credentials

This section describes countermeasures used to protect all kinds of
credentials from unauthorized access and abuse. Credentials are
long-term secrets, such as client secrets and user passwords as well
as all kinds of tokens (refresh and access tokens) or authorization
"codes".

5.1.4.1. Enforce Credential Storage Protection Best Practices

Administrators should undertake industry best practices to protect
the storage of credentials (for example, see [OWASP]). Such
practices may include but are not limited to the following
sub-sections.

5.1.4.1.1. Enforce Standard System Security Means

A server system may be locked down so that no attacker may get access
to sensitive configuration files and databases.

5.1.4.1.2. Enforce Standard SQL Injection Countermeasures

If a client identifier or other authentication component is queried
or compared against a SQL database, it may become possible for an
injection attack to occur if parameters received are not validated
before submission to the database.

o Ensure that server code is using the minimum database privileges
possible to reduce the "surface" of possible attacks.

o Avoid dynamic SQL using concatenated input. If possible, use
static SQL.

o When using dynamic SQL, parameterize queries using bind arguments.
Bind arguments eliminate the possibility of SQL injections.

o Filter and sanitize the input. For example, if an identifier has
a known format, ensure that the supplied value matches the
identifier syntax rules.

Lodderstedt, et al. Informational [Page 51]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 185

RFC 6819 OAuth 2.0 Security January 2013

5.1.4.1.3. No Cleartext Storage of Credentials

The authorization server should not store credentials in clear text.
Typical approaches are to store hashes instead or to encrypt
credentials. If the credential lacks a reasonable entropy level
(because it is a user password), an additional salt will harden the
storage to make offline dictionary attacks more difficult.

Note: Some authentication protocols require the authorization server
to have access to the secret in the clear. Those protocols cannot be
implemented if the server only has access to hashes. Credentials
should be strongly encrypted in those cases.

5.1.4.1.4. Encryption of Credentials

For client applications, insecurely persisted client credentials are
easy targets for attackers to obtain. Store client credentials using
an encrypted persistence mechanism such as a keystore or database.
Note that compiling client credentials directly into client code
makes client applications vulnerable to scanning as well as difficult
to administer should client credentials change over time.

5.1.4.1.5. Use of Asymmetric Cryptography

Usage of asymmetric cryptography will free the authorization server
of the obligation to manage credentials.

5.1.4.2. Online Attacks on Secrets

5.1.4.2.1. Utilize Secure Password Policy

The authorization server may decide to enforce a complex user
password policy in order to increase the user passwords' entropy to
hinder online password attacks. Note that too much complexity can
increase the likelihood that users re-use passwords or write them
down, or otherwise store them insecurely.

5.1.4.2.2. Use High Entropy for Secrets

When creating secrets not intended for usage by human users (e.g.,
client secrets or token handles), the authorization server should
include a reasonable level of entropy in order to mitigate the risk
of guessing attacks. The token value should be >=128 bits long and
constructed from a cryptographically strong random or pseudo-random
number sequence (see [RFC4086] for best current practice) generated
by the authorization server.

Lodderstedt, et al. Informational [Page 52]

186 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

5.1.4.2.3. Lock Accounts

Online attacks on passwords can be mitigated by locking the
respective accounts after a certain number of failed attempts.

Note: This measure can be abused to lock down legitimate service
users.

5.1.4.2.4. Use Tar Pit

The authorization server may react on failed attempts to authenticate
by username/password by temporarily locking the respective account
and delaying the response for a certain duration. This duration may
increase with the number of failed attempts. The objective is to
slow the attacker's attempts on a certain username down.

Note: This may require a more complex and stateful design of the
authorization server.

5.1.4.2.5. Use CAPTCHAs

The idea is to prevent programs from automatically checking a huge
number of passwords, by requiring human interaction.

Note: This has a negative impact on user experience.

5.1.5. Tokens (Access, Refresh, Code)

5.1.5.1. Limit Token Scope

The authorization server may decide to reduce or limit the scope
associated with a token. The basis of this decision is out of scope;
examples are:

o a client-specific policy, e.g., issue only less powerful tokens to
public clients,

o a service-specific policy, e.g., it is a very sensitive service,

o a resource-owner-specific setting, or

o combinations of such policies and preferences.

Lodderstedt, et al. Informational [Page 53]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 187

RFC 6819 OAuth 2.0 Security January 2013

The authorization server may allow different scopes dependent on the
grant type. For example, end-user authorization via direct
interaction with the end user (authorization "code") might be
considered more reliable than direct authorization via grant type
"username"/"password". This means will reduce the impact of the
following threats:

o token leakage

o token issuance to malicious software

o unintended issuance of powerful tokens with resource owner
credentials flow

5.1.5.2. Determine Expiration Time

Tokens should generally expire after a reasonable duration. This
complements and strengthens other security measures (such as
signatures) and reduces the impact of all kinds of token leaks.
Depending on the risk associated with token leakage, tokens may
expire after a few minutes (e.g., for payment transactions) or stay
valid for hours (e.g., read access to contacts).

The expiration time is determined by several factors, including:

o risk associated with token leakage,

o duration of the underlying access grant,

o duration until the modification of an access grant should take
effect, and

o time required for an attacker to guess or produce a valid token.

5.1.5.3. Use Short Expiration Time

A short expiration time for tokens is a means of protection against
the following threats:

o replay

o token leak (a short expiration time will reduce impact)

o online guessing (a short expiration time will reduce the
likelihood of success)

Lodderstedt, et al. Informational [Page 54]

188 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

Note: Short token duration requires more precise clock
synchronization between the authorization server and resource server.
Furthermore, shorter duration may require more token refreshes
(access token) or repeated end-user authorization processes
(authorization "code" and refresh token).

5.1.5.4. Limit Number of Usages or One-Time Usage

The authorization server may restrict the number of requests or
operations that can be performed with a certain token. This
mechanism can be used to mitigate the following threats:

o replay of tokens

o guessing

For example, if an authorization server observes more than one
attempt to redeem an authorization "code", the authorization server
may want to revoke all access tokens granted based on the
authorization "code" as well as reject the current request.

As with the authorization "code", access tokens may also have a
limited number of operations. This either forces client applications
to re-authenticate and use a refresh token to obtain a fresh access
token, or forces the client to re-authorize the access token by
involving the user.

5.1.5.5. Bind Tokens to a Particular Resource Server (Audience)

Authorization servers in multi-service environments may consider
issuing tokens with different content to different resource servers
and to explicitly indicate in the token the target server to which a
token is intended to be sent. SAML assertions (see
[OASIS.saml-core-2.0-os]) use the Audience element for this purpose.
This countermeasure can be used in the following situations:

o It reduces the impact of a successful replay attempt, since the
token is applicable to a single resource server only.

o It prevents abuse of a token by a rogue resource server or client,
since the token can only be used on that server. It is rejected
by other servers.

o It reduces the impact of leakage of a valid token to a counterfeit
resource server.

Lodderstedt, et al. Informational [Page 55]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 189

RFC 6819 OAuth 2.0 Security January 2013

5.1.5.6. Use Endpoint Address as Token Audience

This may be used to indicate to a resource server which endpoint URL
has been used to obtain the token. This measure will allow the
detection of requests from a counterfeit resource server, since such
a token will contain the endpoint URL of that server.

5.1.5.7. Use Explicitly Defined Scopes for Audience and Tokens

Deployments may consider only using tokens with explicitly defined
scopes, where every scope is associated with a particular resource
server. This approach can be used to mitigate attacks where a
resource server or client uses a token for a different purpose than
the one intended.

5.1.5.8. Bind Token to Client id

An authorization server may bind a token to a certain client
identifier. This identifier should be validated for every request
with that token. This technique can be used to

o detect token leakage and

o prevent token abuse.

Note: Validating the client identifier may require the target server
to authenticate the client's identifier. This authentication can be
based on secrets managed independently of the token (e.g.,
pre-registered client id/secret on authorization server) or sent with
the token itself (e.g., as part of the encrypted token content).

5.1.5.9. Sign Self-Contained Tokens

Self-contained tokens should be signed in order to detect any attempt
to modify or produce faked tokens (e.g., Hash-based Message
Authentication Code or digital signatures).

5.1.5.10. Encrypt Token Content

Self-contained tokens may be encrypted for confidentiality reasons or
to protect system internal data. Depending on token format, keys
(e.g., symmetric keys) may have to be distributed between server
nodes. The method of distribution should be defined by the token and
the encryption used.

Lodderstedt, et al. Informational [Page 56]

190 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

5.1.5.11. Adopt a Standard Assertion Format

For service providers intending to implement an assertion-based token
design, it is highly recommended to adopt a standard assertion format
(such as SAML [OASIS.saml-core-2.0-os] or the JavaScript Object
Notation Web Token (JWT) [OAuth-JWT]).

5.1.6. Access Tokens

The following measures should be used to protect access tokens:

o Keep them in transient memory (accessible by the client
application only).

o Pass tokens securely using secure transport (TLS).

o Ensure that client applications do not share tokens with 3rd
parties.

5.2. Authorization Server

This section describes considerations related to the OAuth
authorization server endpoint.

5.2.1. Authorization "codes"

5.2.1.1. Automatic Revocation of Derived Tokens If Abuse Is Detected

If an authorization server observes multiple attempts to redeem an
authorization grant (e.g., such as an authorization "code"), the
authorization server may want to revoke all tokens granted based on
the authorization grant.

5.2.2. Refresh Tokens

5.2.2.1. Restricted Issuance of Refresh Tokens

The authorization server may decide, based on an appropriate policy,
not to issue refresh tokens. Since refresh tokens are long-term
credentials, they may be subject to theft. For example, if the
authorization server does not trust a client to securely store such
tokens, it may refuse to issue such a client a refresh token.

Lodderstedt, et al. Informational [Page 57]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 191

RFC 6819 OAuth 2.0 Security January 2013

5.2.2.2. Binding of Refresh Token to "client_id"

The authorization server should match every refresh token to the
identifier of the client to whom it was issued. The authorization
server should check that the same "client_id" is present for every
request to refresh the access token. If possible (e.g., confidential
clients), the authorization server should authenticate the respective
client.

This is a countermeasure against refresh token theft or leakage.

Note: This binding should be protected from unauthorized
modifications.

5.2.2.3. Refresh Token Rotation

Refresh token rotation is intended to automatically detect and
prevent attempts to use the same refresh token in parallel from
different apps/devices. This happens if a token gets stolen from the
client and is subsequently used by both the attacker and the
legitimate client. The basic idea is to change the refresh token
value with every refresh request in order to detect attempts to
obtain access tokens using old refresh tokens. Since the
authorization server cannot determine whether the attacker or the
legitimate client is trying to access, in case of such an access
attempt the valid refresh token and the access authorization
associated with it are both revoked.

The OAuth specification supports this measure in that the token's
response allows the authorization server to return a new refresh
token even for requests with grant type "refresh_token".

Note: This measure may cause problems in clustered environments,
since usage of the currently valid refresh token must be ensured. In
such an environment, other measures might be more appropriate.

5.2.2.4. Revocation of Refresh Tokens

The authorization server may allow clients or end users to explicitly
request the invalidation of refresh tokens. A mechanism to revoke
tokens is specified in [OAuth-REVOCATION].

Lodderstedt, et al. Informational [Page 58]

192 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

This is a countermeasure against:

o device theft,

o impersonation of a resource owner, or

o suspected compromised client applications.

5.2.2.5. Device Identification

The authorization server may require the binding of authentication
credentials to a device identifier. The International Mobile Station
Equipment Identity [IMEI] is one example of such an identifier; there
are also operating system-specific identifiers. The authorization
server could include such an identifier when authenticating user
credentials in order to detect token theft from a particular device.

Note: Any implementation should consider potential privacy
implications of using device identifiers.

5.2.2.6. X-FRAME-OPTIONS Header

For newer browsers, avoidance of iFrames can be enforced on the
server side by using the X-FRAME-OPTIONS header (see
[X-Frame-Options]). This header can have two values, "DENY" and
"SAMEORIGIN", which will block any framing or any framing by sites
with a different origin, respectively. The value "ALLOW-FROM"
specifies a list of trusted origins that iFrames may originate from.

This is a countermeasure against the following threat:

o Clickjacking attacks

5.2.3. Client Authentication and Authorization

As described in Section 3 (Security Features), clients are
identified, authenticated, and authorized for several purposes, such
as to:

o Collate requests to the same client,

o Indicate to the user that the client is recognized by the
authorization server,

o Authorize access of clients to certain features on the
authorization server or resource server, and

o Log a client identifier to log files for analysis or statistics.

Lodderstedt, et al. Informational [Page 59]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 193

RFC 6819 OAuth 2.0 Security January 2013

Due to the different capabilities and characteristics of the
different client types, there are different ways to support these
objectives, which will be described in this section. Authorization
server providers should be aware of the security policy and
deployment of a particular client and adapt its treatment
accordingly. For example, one approach could be to treat all clients
as less trustworthy and unsecure. On the other extreme, a service
provider could activate every client installation individually by an
administrator and in that way gain confidence in the identity of the
software package and the security of the environment in which the
client is installed. There are several approaches in between.

5.2.3.1. Don't Issue Secrets to Clients with Inappropriate Security
Policy

Authorization servers should not issue secrets to clients that cannot
protect secrets ("public" clients). This reduces the probability of
the server treating the client as strongly authenticated.

For example, it is of limited benefit to create a single client id
and secret that are shared by all installations of a native
application. Such a scenario requires that this secret must be
transmitted from the developer via the respective distribution
channel, e.g., an application market, to all installations of the
application on end-user devices. A secret, burned into the source
code of the application or an associated resource bundle, is not
protected from reverse engineering. Secondly, such secrets cannot be
revoked, since this would immediately put all installations out of
work. Moreover, since the authorization server cannot really trust
the client's identifier, it would be dangerous to indicate to end
users the trustworthiness of the client.

There are other ways to achieve a reasonable security level, as
described in the following sections.

5.2.3.2. Require User Consent for Public Clients without Secret

Authorization servers should not allow automatic authorization for
public clients. The authorization server may issue an individual
client id but should require that all authorizations are approved by
the end user. For clients without secrets, this is a countermeasure
against the following threat:

o Impersonation of public client applications.

Lodderstedt, et al. Informational [Page 60]

194 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

5.2.3.3. Issue a "client_id" Only in Combination with "redirect_uri"

The authorization server may issue a "client_id" and bind the
"client_id" to a certain pre-configured "redirect_uri". Any
authorization request with another redirect URI is refused
automatically. Alternatively, the authorization server should not
accept any dynamic redirect URI for such a "client_id" and instead
should always redirect to the well-known pre-configured redirect URI.
This is a countermeasure for clients without secrets against the
following threats:

o Cross-site scripting attacks

o Impersonation of public client applications

5.2.3.4. Issue Installation-Specific Client Secrets

An authorization server may issue separate client identifiers and
corresponding secrets to the different installations of a particular
client (i.e., software package). The effect of such an approach
would be to turn otherwise "public" clients back into "confidential"
clients.

For web applications, this could mean creating one "client_id" and
"client_secret" for each web site on which a software package is
installed. So, the provider of that particular site could request a
client id and secret from the authorization server during the setup
of the web site. This would also allow the validation of some of the
properties of that web site, such as redirect URI, web site URL, and
whatever else proves useful. The web site provider has to ensure the
security of the client secret on the site.

For native applications, things are more complicated because every
copy of a particular application on any device is a different
installation. Installation-specific secrets in this scenario will
require obtaining a "client_id" and "client_secret" either

1. during the download process from the application market, or

2. during installation on the device.

Either approach will require an automated mechanism for issuing
client ids and secrets, which is currently not defined by OAuth.

The first approach would allow the achievement of a certain level of
trust in the authenticity of the application, whereas the second
option only allows the authentication of the installation but not the
validation of properties of the client. But this would at least help

Lodderstedt, et al. Informational [Page 61]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 195

RFC 6819 OAuth 2.0 Security January 2013

to prevent several replay attacks. Moreover, installation-specific
"client_ids" and secrets allow the selective revocation of all
refresh tokens of a specific installation at once.

5.2.3.5. Validate Pre-Registered "redirect_uri"

An authorization server should require all clients to register their
"redirect_uri", and the "redirect_uri" should be the full URI as
defined in [RFC6749]. The way that this registration is performed is
out of scope of this document. As per the core spec, every actual
redirect URI sent with the respective "client_id" to the end-user
authorization endpoint must match the registered redirect URI. Where
it does not match, the authorization server should assume that the
inbound GET request has been sent by an attacker and refuse it.
Note: The authorization server should not redirect the user agent
back to the redirect URI of such an authorization request.
Validating the pre-registered "redirect_uri" is a countermeasure
against the following threats:

o Authorization "code" leakage through counterfeit web site: allows
authorization servers to detect attack attempts after the first
redirect to an end-user authorization endpoint (Section 4.4.1.7).

o Open redirector attack via a client redirection endpoint
(Section 4.1.5).

o Open redirector phishing attack via an authorization server
redirection endpoint (Section 4.2.4).

The underlying assumption of this measure is that an attacker will
need to use another redirect URI in order to get access to the
authorization "code". Deployments might consider the possibility of
an attacker using spoofing attacks to a victim's device to circumvent
this security measure.

Note: Pre-registering clients might not scale in some deployments
(manual process) or require dynamic client registration (not
specified yet). With the lack of dynamic client registration, a
pre-registered "redirect_uri" only works for clients bound to certain
deployments at development/configuration time. As soon as dynamic
resource server discovery is required, the pre-registered
"redirect_uri" may no longer be feasible.

Lodderstedt, et al. Informational [Page 62]

196 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

5.2.3.6. Revoke Client Secrets

An authorization server may revoke a client's secret in order to
prevent abuse of a revealed secret.

Note: This measure will immediately invalidate any authorization
"code" or refresh token issued to the respective client. This might
unintentionally impact client identifiers and secrets used across
multiple deployments of a particular native or web application.

This a countermeasure against:

o Abuse of revealed client secrets for private clients

5.2.3.7. Use Strong Client Authentication (e.g., client_assertion/
client_token)

By using an alternative form of authentication such as client
assertion [OAuth-ASSERTIONS], the need to distribute a
"client_secret" is eliminated. This may require the use of a secure
private key store or other supplemental authentication system as
specified by the client assertion issuer in its authentication
process.

5.2.4. End-User Authorization

This section includes considerations for authorization flows
involving the end user.

5.2.4.1. Automatic Processing of Repeated Authorizations Requires
Client Validation

Authorization servers should NOT automatically process repeat
authorizations where the client is not authenticated through a client
secret or some other authentication mechanism such as a signed
authentication assertion certificate (Section 5.2.3.7) or validation
of a pre-registered redirect URI (Section 5.2.3.5).

5.2.4.2. Informed Decisions Based on Transparency

The authorization server should clearly explain to the end user what
happens in the authorization process and what the consequences are.
For example, the user should understand what access he is about to
grant to which client for what duration. It should also be obvious
to the user whether the server is able to reliably certify certain
client properties (web site URL, security policy).

Lodderstedt, et al. Informational [Page 63]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 197

RFC 6819 OAuth 2.0 Security January 2013

5.2.4.3. Validation of Client Properties by End User

In the authorization process, the user is typically asked to approve
a client's request for authorization. This is an important security
mechanism by itself because the end user can be involved in the
validation of client properties, such as whether the client name
known to the authorization server fits the name of the web site or
the application the end user is using. This measure is especially
helpful in situations where the authorization server is unable to
authenticate the client. It is a countermeasure against:

o A malicious application

o A client application masquerading as another client

5.2.4.4. Binding of Authorization "code" to "client_id"

The authorization server should bind every authorization "code" to
the id of the respective client that initiated the end-user
authorization process. This measure is a countermeasure against:

o Replay of authorization "codes" with different client credentials,
since an attacker cannot use another "client_id" to exchange an
authorization "code" into a token

o Online guessing of authorization "codes"

Note: This binding should be protected from unauthorized
modifications (e.g., using protected memory and/or a secure
database).

5.2.4.5. Binding of Authorization "code" to "redirect_uri"

The authorization server should be able to bind every authorization
"code" to the actual redirect URI used as the redirect target of the
client in the end-user authorization process. This binding should be
validated when the client attempts to exchange the respective
authorization "code" for an access token. This measure is a
countermeasure against authorization "code" leakage through
counterfeit web sites, since an attacker cannot use another redirect
URI to exchange an authorization "code" into a token.

Lodderstedt, et al. Informational [Page 64]

198 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

5.3. Client App Security

This section deals with considerations for client applications.

5.3.1. Don't Store Credentials in Code or Resources Bundled with
Software Packages

Because of the number of copies of client software, there is limited
benefit in creating a single client id and secret that is shared by
all installations of an application. Such an application by itself
would be considered a "public" client, as it cannot be presumed to be
able to keep client secrets. A secret, burned into the source code
of the application or an associated resource bundle, cannot be
protected from reverse engineering. Secondly, such secrets cannot be
revoked, since this would immediately put all installations out of
work. Moreover, since the authorization server cannot really trust
the client's identifier, it would be dangerous to indicate to end
users the trustworthiness of the client.

5.3.2. Use Standard Web Server Protection Measures (for Config Files
and Databases)

Use standard web server protection and configuration measures to
protect the integrity of the server, databases, configuration files,
and other operational components of the server.

5.3.3. Store Secrets in Secure Storage

There are different ways to store secrets of all kinds (tokens,
client secrets) securely on a device or server.

Most multi-user operating systems segregate the personal storage of
different system users. Moreover, most modern smartphone operating
systems even support the storage of application-specific data in
separate areas of file systems and protect the data from access by
other applications. Additionally, applications can implement
confidential data by using a user-supplied secret, such as a PIN or
password.

Another option is to swap refresh token storage to a trusted backend
server. This option in turn requires a resilient authentication
mechanism between the client and backend server. Note: Applications
should ensure that confidential data is kept confidential even after
reading from secure storage, which typically means keeping this data
in the local memory of the application.

Lodderstedt, et al. Informational [Page 65]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 199

RFC 6819 OAuth 2.0 Security January 2013

5.3.4. Utilize Device Lock to Prevent Unauthorized Device Access

On a typical modern phone, there are many "device lock" options that
can be utilized to provide additional protection when a device is
stolen or misplaced. These include PINs, passwords, and other
biometric features such as "face recognition". These are not equal
in the level of security they provide.

5.3.5. Link the "state" Parameter to User Agent Session

The "state" parameter is used to link client requests and prevent
CSRF attacks, for example, attacks against the redirect URI. An
attacker could inject their own authorization "code" or access token,
which can result in the client using an access token associated with
the attacker's protected resources rather than the victim's (e.g.,
save the victim's bank account information to a protected resource
controlled by the attacker).

The client should utilize the "state" request parameter to send the
authorization server a value that binds the request to the user
agent's authenticated state (e.g., a hash of the session cookie used
to authenticate the user agent) when making an authorization request.
Once authorization has been obtained from the end user, the
authorization server redirects the end-user's user agent back to the
client with the required binding value contained in the "state"
parameter.

The binding value enables the client to verify the validity of the
request by matching the binding value to the user agent's
authenticated state.

5.4. Resource Servers

The following section details security considerations for resource
servers.

5.4.1. Authorization Headers

Authorization headers are recognized and specially treated by HTTP
proxies and servers. Thus, the usage of such headers for sending
access tokens to resource servers reduces the likelihood of leakage
or unintended storage of authenticated requests in general, and
especially Authorization headers.

Lodderstedt, et al. Informational [Page 66]

200 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

5.4.2. Authenticated Requests

An authorization server may bind tokens to a certain client
identifier and enable resource servers to validate that association
on resource access. This will require the resource server to
authenticate the originator of a request as the legitimate owner of a
particular token. There are several options to implement this
countermeasure:

o The authorization server may associate the client identifier with
the token (either internally or in the payload of a self-contained
token). The client then uses client certificate-based HTTP
authentication on the resource server's endpoint to authenticate
its identity, and the resource server validates the name with the
name referenced by the token.

o Same as the option above, but the client uses his private key to
sign the request to the resource server (the public key is either
contained in the token or sent along with the request).

o Alternatively, the authorization server may issue a token-bound
key, which the client uses in a Holder-of-Key proof to
authenticate the client's use of the token. The resource server
obtains the secret directly from the authorization server, or the
secret is contained in an encrypted section of the token. In that
way, the resource server does not "know" the client but is able to
validate whether the authorization server issued the token to that
client.

Authenticated requests are a countermeasure against abuse of tokens
by counterfeit resource servers.

5.4.3. Signed Requests

A resource server may decide to accept signed requests only, either
to replace transport-level security measures or to complement such
measures. Every signed request should be uniquely identifiable and
should not be processed twice by the resource server. This
countermeasure helps to mitigate:

o modifications of the message and

o replay attempts

Lodderstedt, et al. Informational [Page 67]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 201

RFC 6819 OAuth 2.0 Security January 2013

5.5. A Word on User Interaction and User-Installed Apps

OAuth, as a security protocol, is distinctive in that its flow
usually involves significant user interaction, making the end user a
part of the security model. This creates some important difficulties
in defending against some of the threats discussed above. Some of
these points have already been made, but it's worth repeating and
highlighting them here.

o End users must understand what they are being asked to approve
(see Section 5.2.4.2). Users often do not have the expertise to
understand the ramifications of saying "yes" to an authorization
request and are likely not to be able to see subtle differences in
the wording of requests. Malicious software can confuse the user,
tricking the user into approving almost anything.

o End-user devices are prone to software compromise. This has been
a long-standing problem, with frequent attacks on web browsers and
other parts of the user's system. But with the increasing
popularity of user-installed "apps", the threat posed by
compromised or malicious end-user software is very strong and is
one that is very difficult to mitigate.

o Be aware that users will demand to install and run such apps, and
that compromised or malicious ones can steal credentials at many
points in the data flow. They can intercept the very user login
credentials that OAuth is designed to protect. They can request
authorization far beyond what they have led the user to understand
and approve. They can automate a response on behalf of the user,
hiding the whole process. No solution is offered here, because
none is known; this remains in the space between better security
and better usability.

o Addressing these issues by restricting the use of user-installed
software may be practical in some limited environments and can be
used as a countermeasure in those cases. Such restrictions are
not practical in the general case, and mechanisms for after-the-
fact recovery should be in place.

o While end users are mostly incapable of properly vetting
applications they load onto their devices, those who deploy
authorization servers might have tools at their disposal to
mitigate malicious clients. For example, a well-run authorization
server must only assert client properties to the end user it is
effectively capable of validating, explicitly point out which
properties it cannot validate, and indicate to the end user the
risk associated with granting access to the particular client.

Lodderstedt, et al. Informational [Page 68]

202 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

6. Acknowledgements

We would like to thank Stephen Farrell, Barry Leiba, Hui-Lan Lu,
Francisco Corella, Peifung E. Lam, Shane B. Weeden, Skylar Woodward,
Niv Steingarten, Tim Bray, and James H. Manger for their comments and
contributions.

7. References

7.1. Normative References

[RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework",
RFC 6749, October 2012.

[RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
Framework: Bearer Token Usage", RFC 6750, October 2012.

7.2. Informative References

[Framebusting]
Rydstedt, G., Bursztein, Boneh, D., and C. Jackson,
"Busting Frame Busting: a Study of Clickjacking
Vulnerabilities on Popular Sites", IEEE 3rd Web 2.0
Security and Privacy Workshop, May 2010, .

[IMEI] 3GPP, "International Mobile station Equipment Identities
(IMEI)", 3GPP TS 22.016 11.0.0, September 2012,
.

[OASIS.saml-core-2.0-os]
Cantor, S., Ed., Kemp, J., Ed., Philpott, R., Ed., and E.
Maler, Ed., "Assertions and Protocols for the OASIS
Security Assertion Markup Language (SAML) V2.0", OASIS
Standard saml-core-2.0-os, March 2005,
.

[OASIS.sstc-saml-bindings-1.1]
Maler, E., Ed., Mishra, P., Ed., and R. Philpott, Ed.,
"Bindings and Profiles for the OASIS Security Assertion
Markup Language (SAML) V1.1", September 2003,
.

Lodderstedt, et al. Informational [Page 69]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 203

RFC 6819 OAuth 2.0 Security January 2013

[OASIS.sstc-sec-analysis-response-01]
Linn, J., Ed., and P. Mishra, Ed., "SSTC Response to
"Security Analysis of the SAML Single Sign-on Browser/
Artifact Profile"", January 2005,
.

[OAuth-ASSERTIONS]
Campbell, B., Mortimore, C., Jones, M., and Y. Goland,
"Assertion Framework for OAuth 2.0", Work in Progress,
December 2012.

[OAuth-HTTP-MAC]
Richer, J., Ed., Mills, W., Ed., and H. Tschofenig, Ed.,
"OAuth 2.0 Message Authentication Code (MAC) Tokens", Work
in Progress, November 2012.

[OAuth-JWT]
Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
(JWT)", Work in Progress, December 2012.

[OAuth-REVOCATION]
Lodderstedt, T., Ed., Dronia, S., and M. Scurtescu, "Token
Revocation", Work in Progress, November 2012.

[OPENID] "OpenID Foundation Home Page", .

[OWASP] "Open Web Application Security Project Home Page",
.

[Portable-Contacts]
Smarr, J., "Portable Contacts 1.0 Draft C", August 2008,
.

[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

[RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

[RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
Requirements for Security", BCP 106, RFC 4086, June 2005.

[RFC4120] Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
Kerberos Network Authentication Service (V5)", RFC 4120,
July 2005.

Lodderstedt, et al. Informational [Page 70]

204 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

RFC 6819 OAuth 2.0 Security January 2013

[RFC4301] Kent, S. and K. Seo, "Security Architecture for the
Internet Protocol", RFC 4301, December 2005.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.

[SSL-Latency]
Sissel, J., Ed., "SSL handshake latency and HTTPS
optimizations", June 2010.

[Sec-Analysis]
Gross, T., "Security Analysis of the SAML Single Sign-on
Browser/Artifact Profile", 19th Annual Computer Security
Applications Conference, Las Vegas, December 2003.

[X-Frame-Options]
Ross, D. and T. Gondrom, "HTTP Header X-Frame-Options",
Work in Progress, October 2012.

[iFrame] World Wide Web Consortium, "Frames in HTML documents",
W3C HTML 4.01, December 1999,
.

Authors' Addresses

Torsten Lodderstedt (editor)
Deutsche Telekom AG

EMail: torsten@lodderstedt.net

Mark McGloin
IBM

EMail: mark.mcgloin@ie.ibm.com

Phil Hunt
Oracle Corporation

EMail: phil.hunt@yahoo.com

Lodderstedt, et al. Informational [Page 71]

RFC 6819: OAuth 2.0 Threat Model and Security Considerations 205

206 RFC 6819: OAuth 2.0 Threat Model and Security Considerations

Chapter 5

RFC 8252: OAuth 2.0 for
Native and Mobile Apps

The intended audience for this spec is implementers of
mobile apps or apps running on desktop devices, where
interactions between the app and the browser are not as
straightforward as in a browser-only environment. RFC
8252 is the first "Best Current Practice" (BCP) published by
the group.

This is more of a set of guidelines rather than changes to
the underlying protocol. It describes things like not
allowing the applications to open an embedded web view
which would be more susceptible to phishing attacks, as
well as platform-specific recommendations on how to do
so. It also requires that these types of apps use the PKCE
extension since they are unable to use a client secret.

This was published in 2017, a full 5 years after the original
RFC, and the mobile app landscape had matured a lot in
those five years. This spec intends to bring the original
RFC up to date based on the developments in mobile
platforms in that time. That said, a few years later and
things have continued to change, so some of the platform-
specific details mentioned in this spec may now be out of
date.

RFC 8252: OAuth 2.0 for Native and Mobile Apps 207

208 RFC 8252: OAuth 2.0 for Native and Mobile Apps

Internet Engineering Task Force (IETF) W. Denniss
Request for Comments: 8252 Google
BCP: 212 J. Bradley
Updates: 6749 Ping Identity
Category: Best Current Practice October 2017
ISSN: 2070-1721

OAuth 2.0 for Native Apps

Abstract

OAuth 2.0 authorization requests from native apps should only be made
through external user-agents, primarily the user's browser. This
specification details the security and usability reasons why this is
the case and how native apps and authorization servers can implement
this best practice.

Status of This Memo

This memo documents an Internet Best Current Practice.

This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
BCPs is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8252.

Copyright Notice

Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Denniss & Bradley Best Current Practice [Page 1]

RFC 8252: OAuth 2.0 for Native and Mobile Apps 209

RFC 8252 OAuth 2.0 for Native Apps October 2017

Table of Contents

1. Introduction . 3
2. Notational Conventions 3
3. Terminology . 3
4. Overview . 4

4.1. Authorization Flow for Native Apps Using the Browser . . 5
5. Using Inter-App URI Communication for OAuth 6
6. Initiating the Authorization Request from a Native App . . . 6
7. Receiving the Authorization Response in a Native App 7

7.1. Private-Use URI Scheme Redirection 8
7.2. Claimed "https" Scheme URI Redirection 9
7.3. Loopback Interface Redirection 9

8. Security Considerations 10
8.1. Protecting the Authorization Code 10
8.2. OAuth Implicit Grant Authorization Flow 11
8.3. Loopback Redirect Considerations 11
8.4. Registration of Native App Clients 12
8.5. Client Authentication 12
8.6. Client Impersonation 13
8.7. Fake External User-Agents 13
8.8. Malicious External User-Agents 14
8.9. Cross-App Request Forgery Protections 14
8.10. Authorization Server Mix-Up Mitigation 14
8.11. Non-Browser External User-Agents 15
8.12. Embedded User-Agents 15

9. IANA Considerations . 16
10. References . 16

10.1. Normative References 16
10.2. Informative References 17

Appendix A. Server Support Checklist 18
Appendix B. Platform-Specific Implementation Details 18

B.1. iOS Implementation Details 18
B.2. Android Implementation Details 19
B.3. Windows Implementation Details 19
B.4. macOS Implementation Details 20
B.5. Linux Implementation Details 21

Acknowledgements . 21
Authors' Addresses . 21

Denniss & Bradley Best Current Practice [Page 2]

210 RFC 8252: OAuth 2.0 for Native and Mobile Apps

RFC 8252 OAuth 2.0 for Native Apps October 2017

1. Introduction

Section 9 of the OAuth 2.0 authorization framework [RFC6749]
documents two approaches for native apps to interact with the
authorization endpoint: an embedded user-agent and an external user-
agent.

This best current practice requires that only external user-agents
like the browser are used for OAuth by native apps. It documents how
native apps can implement authorization flows using the browser as
the preferred external user-agent as well as the requirements for
authorization servers to support such usage.

This practice is also known as the "AppAuth pattern", in reference to
open-source libraries [AppAuth] that implement it.

2. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

3. Terminology

In addition to the terms defined in referenced specifications, this
document uses the following terms:

"native app" An app or application that is installed by the user to
their device, as distinct from a web app that runs in the browser
context only. Apps implemented using web-based technology but
distributed as a native app, so-called "hybrid apps", are
considered equivalent to native apps for the purpose of this
specification.

"app" A "native app" unless further specified.

"app store" An e-commerce store where users can download and
purchase apps.

"OAuth" Authorization protocol specified by the OAuth 2.0
Authorization Framework [RFC6749].

"external user-agent" A user-agent capable of handling the
authorization request that is a separate entity or security domain
to the native app making the request, such that the app cannot
access the cookie storage, nor inspect or modify page content.

Denniss & Bradley Best Current Practice [Page 3]

RFC 8252: OAuth 2.0 for Native and Mobile Apps 211

RFC 8252 OAuth 2.0 for Native Apps October 2017

"embedded user-agent" A user-agent hosted by the native app making
the authorization request that forms a part of the app or shares
the same security domain such that the app can access the cookie
storage and/or inspect or modify page content.

"browser" The default application launched by the operating system
to handle "http" and "https" scheme URI content.

"in-app browser tab" A programmatic instantiation of the browser
that is displayed inside a host app but that retains the full
security properties and authentication state of the browser. It
has different platform-specific product names, several of which
are detailed in Appendix B.

"web-view" A web browser UI (user interface) component that is
embedded in apps to render web pages under the control of the app.

"inter-app communication" Communication between two apps on a
device.

"claimed "https" scheme URI" Some platforms allow apps to claim an
"https" scheme URI after proving ownership of the domain name.
URIs claimed in such a way are then opened in the app instead of
the browser.

"private-use URI scheme" As used by this document, a URI scheme
defined by the app (following the requirements of Section 3.8 of
[RFC7595]) and registered with the operating system. URI requests
to such schemes launch the app that registered it to handle the
request.

"reverse domain name notation" A naming convention based on the
domain name system, but one where the domain components are
reversed, for example, "app.example.com" becomes
"com.example.app".

4. Overview

For authorizing users in native apps, the best current practice is to
perform the OAuth authorization request in an external user-agent
(typically the browser) rather than an embedded user-agent (such as
one implemented with web-views).

Previously, it was common for native apps to use embedded user-agents
(commonly implemented with web-views) for OAuth authorization
requests. That approach has many drawbacks, including the host app
being able to copy user credentials and cookies as well as the user
needing to authenticate from scratch in each app. See Section 8.12

Denniss & Bradley Best Current Practice [Page 4]

212 RFC 8252: OAuth 2.0 for Native and Mobile Apps

RFC 8252 OAuth 2.0 for Native Apps October 2017

for a deeper analysis of the drawbacks of using embedded user-agents
for OAuth.

Native app authorization requests that use the browser are more
secure and can take advantage of the user's authentication state.
Being able to use the existing authentication session in the browser
enables single sign-on, as users don't need to authenticate to the
authorization server each time they use a new app (unless required by
the authorization server policy).

Supporting authorization flows between a native app and the browser
is possible without changing the OAuth protocol itself, as the OAuth
authorization request and response are already defined in terms of
URIs. This encompasses URIs that can be used for inter-app
communication. Some OAuth server implementations that assume all
clients are confidential web clients will need to add an
understanding of public native app clients and the types of redirect
URIs they use to support this best practice.

4.1. Authorization Flow for Native Apps Using the Browser

+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+
| User Device |
| |
| +--------------------------+ | (5) Authorization +---------------+
			Code	
	Client App	---------------------->	Token	
		<----------------------	Endpoint	
+--------------------------+	(6) Access Token,			
	^	Refresh Token +---------------+		
	(1)	(4)		
	Authorizat-	Authoriza-		
	ion Request	tion Code		
v				
+---------------------------+	(2) Authorization +---------------+			
			Request	
	Browser	--------------------->	Authorization	
		<---------------------	Endpoint	
+---------------------------+	(3) Authorization			
	Code +---------------+			
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+

Figure 1: Native App Authorization via an External User-Agent

Denniss & Bradley Best Current Practice [Page 5]

RFC 8252: OAuth 2.0 for Native and Mobile Apps 213

RFC 8252 OAuth 2.0 for Native Apps October 2017

Figure 1 illustrates the interaction between a native app and the
browser to authorize the user.

(1) Client app opens a browser tab with the authorization request.

(2) Authorization endpoint receives the authorization request,
authenticates the user, and obtains authorization.
Authenticating the user may involve chaining to other
authentication systems.

(3) Authorization server issues an authorization code to the
redirect URI.

(4) Client receives the authorization code from the redirect URI.

(5) Client app presents the authorization code at the token
endpoint.

(6) Token endpoint validates the authorization code and issues the
tokens requested.

5. Using Inter-App URI Communication for OAuth

Just as URIs are used for OAuth 2.0 [RFC6749] on the web to initiate
the authorization request and return the authorization response to
the requesting website, URIs can be used by native apps to initiate
the authorization request in the device's browser and return the
response to the requesting native app.

By adopting the same methods used on the web for OAuth, benefits seen
in the web context like the usability of a single sign-on session and
the security of a separate authentication context are likewise gained
in the native app context. Reusing the same approach also reduces
the implementation complexity and increases interoperability by
relying on standards-based web flows that are not specific to a
particular platform.

To conform to this best practice, native apps MUST use an external
user-agent to perform OAuth authorization requests. This is achieved
by opening the authorization request in the browser (detailed in
Section 6) and using a redirect URI that will return the
authorization response back to the native app (defined in Section 7).

Denniss & Bradley Best Current Practice [Page 6]

214 RFC 8252: OAuth 2.0 for Native and Mobile Apps

RFC 8252 OAuth 2.0 for Native Apps October 2017

6. Initiating the Authorization Request from a Native App

Native apps needing user authorization create an authorization
request URI with the authorization code grant type per Section 4.1 of
OAuth 2.0 [RFC6749], using a redirect URI capable of being received
by the native app.

The function of the redirect URI for a native app authorization
request is similar to that of a web-based authorization request.
Rather than returning the authorization response to the OAuth
client's server, the redirect URI used by a native app returns the
response to the app. Several options for a redirect URI that will
return the authorization response to the native app in different
platforms are documented in Section 7. Any redirect URI that allows
the app to receive the URI and inspect its parameters is viable.

Public native app clients MUST implement the Proof Key for Code
Exchange (PKCE [RFC7636]) extension to OAuth, and authorization
servers MUST support PKCE for such clients, for the reasons detailed
in Section 8.1.

After constructing the authorization request URI, the app uses
platform-specific APIs to open the URI in an external user-agent.
Typically, the external user-agent used is the default browser, that
is, the application configured for handling "http" and "https" scheme
URIs on the system; however, different browser selection criteria and
other categories of external user-agents MAY be used.

This best practice focuses on the browser as the RECOMMENDED external
user-agent for native apps. An external user-agent designed
specifically for user authorization and capable of processing
authorization requests and responses like a browser MAY also be used.
Other external user-agents, such as a native app provided by the
authorization server may meet the criteria set out in this best
practice, including using the same redirection URI properties, but
their use is out of scope for this specification.

Some platforms support a browser feature known as "in-app browser
tabs", where an app can present a tab of the browser within the app
context without switching apps, but still retain key benefits of the
browser such as a shared authentication state and security context.
On platforms where they are supported, it is RECOMMENDED, for
usability reasons, that apps use in-app browser tabs for the
authorization request.

Denniss & Bradley Best Current Practice [Page 7]

RFC 8252: OAuth 2.0 for Native and Mobile Apps 215

RFC 8252 OAuth 2.0 for Native Apps October 2017

7. Receiving the Authorization Response in a Native App

There are several redirect URI options available to native apps for
receiving the authorization response from the browser, the
availability and user experience of which varies by platform.

To fully support this best practice, authorization servers MUST offer
at least the three redirect URI options described in the following
subsections to native apps. Native apps MAY use whichever redirect
option suits their needs best, taking into account platform-specific
implementation details.

7.1. Private-Use URI Scheme Redirection

Many mobile and desktop computing platforms support inter-app
communication via URIs by allowing apps to register private-use URI
schemes (sometimes colloquially referred to as "custom URL schemes")
like "com.example.app". When the browser or another app attempts to
load a URI with a private-use URI scheme, the app that registered it
is launched to handle the request.

To perform an OAuth 2.0 authorization request with a private-use URI
scheme redirect, the native app launches the browser with a standard
authorization request, but one where the redirection URI utilizes a
private-use URI scheme it registered with the operating system.

When choosing a URI scheme to associate with the app, apps MUST use a
URI scheme based on a domain name under their control, expressed in
reverse order, as recommended by Section 3.8 of [RFC7595] for
private-use URI schemes.

For example, an app that controls the domain name "app.example.com"
can use "com.example.app" as their scheme. Some authorization
servers assign client identifiers based on domain names, for example,
"client1234.usercontent.example.net", which can also be used as the
domain name for the scheme when reversed in the same manner. A
scheme such as "myapp", however, would not meet this requirement, as
it is not based on a domain name.

When there are multiple apps by the same publisher, care must be
taken so that each scheme is unique within that group. On platforms
that use app identifiers based on reverse-order domain names, those
identifiers can be reused as the private-use URI scheme for the OAuth
redirect to help avoid this problem.

Denniss & Bradley Best Current Practice [Page 8]

216 RFC 8252: OAuth 2.0 for Native and Mobile Apps

RFC 8252 OAuth 2.0 for Native Apps October 2017

Following the requirements of Section 3.2 of [RFC3986], as there is
no naming authority for private-use URI scheme redirects, only a
single slash ("/") appears after the scheme component. A complete
example of a redirect URI utilizing a private-use URI scheme is:

com.example.app:/oauth2redirect/example-provider

When the authorization server completes the request, it redirects to
the client's redirection URI as it would normally. As the
redirection URI uses a private-use URI scheme, it results in the
operating system launching the native app, passing in the URI as a
launch parameter. Then, the native app uses normal processing for
the authorization response.

7.2. Claimed "https" Scheme URI Redirection

Some operating systems allow apps to claim "https" scheme [RFC7230]
URIs in the domains they control. When the browser encounters a
claimed URI, instead of the page being loaded in the browser, the
native app is launched with the URI supplied as a launch parameter.

Such URIs can be used as redirect URIs by native apps. They are
indistinguishable to the authorization server from a regular web-
based client redirect URI. An example is:

https://app.example.com/oauth2redirect/example-provider

As the redirect URI alone is not enough to distinguish public native
app clients from confidential web clients, it is REQUIRED in
Section 8.4 that the client type be recorded during client
registration to enable the server to determine the client type and
act accordingly.

App-claimed "https" scheme redirect URIs have some advantages
compared to other native app redirect options in that the identity of
the destination app is guaranteed to the authorization server by the
operating system. For this reason, native apps SHOULD use them over
the other options where possible.

7.3. Loopback Interface Redirection

Native apps that are able to open a port on the loopback network
interface without needing special permissions (typically, those on
desktop operating systems) can use the loopback interface to receive
the OAuth redirect.

Loopback redirect URIs use the "http" scheme and are constructed with
the loopback IP literal and whatever port the client is listening on.

Denniss & Bradley Best Current Practice [Page 9]

RFC 8252: OAuth 2.0 for Native and Mobile Apps 217

RFC 8252 OAuth 2.0 for Native Apps October 2017

That is, "http://127.0.0.1:{port}/{path}" for IPv4, and
"http://[::1]:{port}/{path}" for IPv6. An example redirect using the
IPv4 loopback interface with a randomly assigned port:

http://127.0.0.1:51004/oauth2redirect/example-provider

An example redirect using the IPv6 loopback interface with a randomly
assigned port:

http://[::1]:61023/oauth2redirect/example-provider

The authorization server MUST allow any port to be specified at the
time of the request for loopback IP redirect URIs, to accommodate
clients that obtain an available ephemeral port from the operating
system at the time of the request.

Clients SHOULD NOT assume that the device supports a particular
version of the Internet Protocol. It is RECOMMENDED that clients
attempt to bind to the loopback interface using both IPv4 and IPv6
and use whichever is available.

8. Security Considerations

8.1. Protecting the Authorization Code

The redirect URI options documented in Section 7 share the benefit
that only a native app on the same device or the app's own website
can receive the authorization code, which limits the attack surface.
However, code interception by a different native app running on the
same device may be possible.

A limitation of using private-use URI schemes for redirect URIs is
that multiple apps can typically register the same scheme, which
makes it indeterminate as to which app will receive the authorization
code. Section 1 of PKCE [RFC7636] details how this limitation can be
used to execute a code interception attack.

Loopback IP-based redirect URIs may be susceptible to interception by
other apps accessing the same loopback interface on some operating
systems.

App-claimed "https" scheme redirects are less susceptible to URI
interception due to the presence of the URI authority, but the app is
still a public client; further, the URI is sent using the operating
system's URI dispatch handler with unknown security properties.

Denniss & Bradley Best Current Practice [Page 10]

218 RFC 8252: OAuth 2.0 for Native and Mobile Apps

RFC 8252 OAuth 2.0 for Native Apps October 2017

The PKCE [RFC7636] protocol was created specifically to mitigate this
attack. It is a proof-of-possession extension to OAuth 2.0 that
protects the authorization code from being used if it is intercepted.
To provide protection, this extension has the client generate a
secret verifier; it passes a hash of this verifier in the initial
authorization request, and must present the unhashed verifier when
redeeming the authorization code. An app that intercepted the
authorization code would not be in possession of this secret,
rendering the code useless.

Section 6 requires that both clients and servers use PKCE for public
native app clients. Authorization servers SHOULD reject
authorization requests from native apps that don't use PKCE by
returning an error message, as defined in Section 4.4.1 of PKCE
[RFC7636].

8.2. OAuth Implicit Grant Authorization Flow

The OAuth 2.0 implicit grant authorization flow (defined in
Section 4.2 of OAuth 2.0 [RFC6749]) generally works with the practice
of performing the authorization request in the browser and receiving
the authorization response via URI-based inter-app communication.
However, as the implicit flow cannot be protected by PKCE [RFC7636]
(which is required in Section 8.1), the use of the Implicit Flow with
native apps is NOT RECOMMENDED.

Access tokens granted via the implicit flow also cannot be refreshed
without user interaction, making the authorization code grant flow --
which can issue refresh tokens -- the more practical option for
native app authorizations that require refreshing of access tokens.

8.3. Loopback Redirect Considerations

Loopback interface redirect URIs use the "http" scheme (i.e., without
Transport Layer Security (TLS)). This is acceptable for loopback
interface redirect URIs as the HTTP request never leaves the device.

Clients should open the network port only when starting the
authorization request and close it once the response is returned.

Clients should listen on the loopback network interface only, in
order to avoid interference by other network actors.

While redirect URIs using localhost (i.e.,
"http://localhost:{port}/{path}") function similarly to loopback IP
redirects described in Section 7.3, the use of localhost is NOT
RECOMMENDED. Specifying a redirect URI with the loopback IP literal
rather than localhost avoids inadvertently listening on network

Denniss & Bradley Best Current Practice [Page 11]

RFC 8252: OAuth 2.0 for Native and Mobile Apps 219

RFC 8252 OAuth 2.0 for Native Apps October 2017

interfaces other than the loopback interface. It is also less
susceptible to client-side firewalls and misconfigured host name
resolution on the user's device.

8.4. Registration of Native App Clients

Except when using a mechanism like Dynamic Client Registration
[RFC7591] to provision per-instance secrets, native apps are
classified as public clients, as defined by Section 2.1 of OAuth 2.0
[RFC6749]; they MUST be registered with the authorization server as
such. Authorization servers MUST record the client type in the
client registration details in order to identify and process requests
accordingly.

Authorization servers MUST require clients to register their complete
redirect URI (including the path component) and reject authorization
requests that specify a redirect URI that doesn't exactly match the
one that was registered; the exception is loopback redirects, where
an exact match is required except for the port URI component.

For private-use URI scheme-based redirects, authorization servers
SHOULD enforce the requirement in Section 7.1 that clients use
schemes that are reverse domain name based. At a minimum, any
private-use URI scheme that doesn't contain a period character (".")
SHOULD be rejected.

In addition to the collision-resistant properties, requiring a URI
scheme based on a domain name that is under the control of the app
can help to prove ownership in the event of a dispute where two apps
claim the same private-use URI scheme (where one app is acting
maliciously). For example, if two apps claimed "com.example.app",
the owner of "example.com" could petition the app store operator to
remove the counterfeit app. Such a petition is harder to prove if a
generic URI scheme was used.

Authorization servers MAY request the inclusion of other platform-
specific information, such as the app package or bundle name, or
other information that may be useful for verifying the calling app's
identity on operating systems that support such functions.

8.5. Client Authentication

Secrets that are statically included as part of an app distributed to
multiple users should not be treated as confidential secrets, as one
user may inspect their copy and learn the shared secret. For this
reason, and those stated in Section 5.3.1 of [RFC6819], it is NOT
RECOMMENDED for authorization servers to require client

Denniss & Bradley Best Current Practice [Page 12]

220 RFC 8252: OAuth 2.0 for Native and Mobile Apps

RFC 8252 OAuth 2.0 for Native Apps October 2017

authentication of public native apps clients using a shared secret,
as this serves little value beyond client identification which is
already provided by the "client_id" request parameter.

Authorization servers that still require a statically included shared
secret for native app clients MUST treat the client as a public
client (as defined by Section 2.1 of OAuth 2.0 [RFC6749]), and not
accept the secret as proof of the client's identity. Without
additional measures, such clients are subject to client impersonation
(see Section 8.6).

8.6. Client Impersonation

As stated in Section 10.2 of OAuth 2.0 [RFC6749], the authorization
server SHOULD NOT process authorization requests automatically
without user consent or interaction, except when the identity of the
client can be assured. This includes the case where the user has
previously approved an authorization request for a given client id --
unless the identity of the client can be proven, the request SHOULD
be processed as if no previous request had been approved.

Measures such as claimed "https" scheme redirects MAY be accepted by
authorization servers as identity proof. Some operating systems may
offer alternative platform-specific identity features that MAY be
accepted, as appropriate.

8.7. Fake External User-Agents

The native app that is initiating the authorization request has a
large degree of control over the user interface and can potentially
present a fake external user-agent, that is, an embedded user-agent
made to appear as an external user-agent.

When all good actors are using external user-agents, the advantage is
that it is possible for security experts to detect bad actors, as
anyone faking an external user-agent is provably bad. On the other
hand, if good and bad actors alike are using embedded user-agents,
bad actors don't need to fake anything, making them harder to detect.
Once a malicious app is detected, it may be possible to use this
knowledge to blacklist the app's signature in malware scanning
software, take removal action (in the case of apps distributed by app
stores) and other steps to reduce the impact and spread of the
malicious app.

Authorization servers can also directly protect against fake external
user-agents by requiring an authentication factor only available to
true external user-agents.

Denniss & Bradley Best Current Practice [Page 13]

RFC 8252: OAuth 2.0 for Native and Mobile Apps 221

RFC 8252 OAuth 2.0 for Native Apps October 2017

Users who are particularly concerned about their security when using
in-app browser tabs may also take the additional step of opening the
request in the full browser from the in-app browser tab and complete
the authorization there, as most implementations of the in-app
browser tab pattern offer such functionality.

8.8. Malicious External User-Agents

If a malicious app is able to configure itself as the default handler
for "https" scheme URIs in the operating system, it will be able to
intercept authorization requests that use the default browser and
abuse this position of trust for malicious ends such as phishing the
user.

This attack is not confined to OAuth; a malicious app configured in
this way would present a general and ongoing risk to the user beyond
OAuth usage by native apps. Many operating systems mitigate this
issue by requiring an explicit user action to change the default
handler for "http" and "https" scheme URIs.

8.9. Cross-App Request Forgery Protections

Section 5.3.5 of [RFC6819] recommends using the "state" parameter to
link client requests and responses to prevent CSRF (Cross-Site
Request Forgery) attacks.

To mitigate CSRF-style attacks over inter-app URI communication
channels (so called "cross-app request forgery"), it is similarly
RECOMMENDED that native apps include a high-entropy secure random
number in the "state" parameter of the authorization request and
reject any incoming authorization responses without a state value
that matches a pending outgoing authorization request.

8.10. Authorization Server Mix-Up Mitigation

To protect against a compromised or malicious authorization server
attacking another authorization server used by the same app, it is
REQUIRED that a unique redirect URI is used for each authorization
server used by the app (for example, by varying the path component),
and that authorization responses are rejected if the redirect URI
they were received on doesn't match the redirect URI in an outgoing
authorization request.

The native app MUST store the redirect URI used in the authorization
request with the authorization session data (i.e., along with "state"
and other related data) and MUST verify that the URI on which the
authorization response was received exactly matches it.

Denniss & Bradley Best Current Practice [Page 14]

222 RFC 8252: OAuth 2.0 for Native and Mobile Apps

RFC 8252 OAuth 2.0 for Native Apps October 2017

The requirement of Section 8.4, specifically that authorization
servers reject requests with URIs that don't match what was
registered, is also required to prevent such attacks.

8.11. Non-Browser External User-Agents

This best practice recommends a particular type of external user-
agent: the user's browser. Other external user-agent patterns may
also be viable for secure and usable OAuth. This document makes no
comment on those patterns.

8.12. Embedded User-Agents

Section 9 of OAuth 2.0 [RFC6749] documents two approaches for native
apps to interact with the authorization endpoint. This best current
practice requires that native apps MUST NOT use embedded user-agents
to perform authorization requests and allows that authorization
endpoints MAY take steps to detect and block authorization requests
in embedded user-agents. The security considerations for these
requirements are detailed herein.

Embedded user-agents are an alternative method for authorizing native
apps. These embedded user-agents are unsafe for use by third parties
to the authorization server by definition, as the app that hosts the
embedded user-agent can access the user's full authentication
credential, not just the OAuth authorization grant that was intended
for the app.

In typical web-view-based implementations of embedded user-agents,
the host application can record every keystroke entered in the login
form to capture usernames and passwords, automatically submit forms
to bypass user consent, and copy session cookies and use them to
perform authenticated actions as the user.

Even when used by trusted apps belonging to the same party as the
authorization server, embedded user-agents violate the principle of
least privilege by having access to more powerful credentials than
they need, potentially increasing the attack surface.

Encouraging users to enter credentials in an embedded user-agent
without the usual address bar and visible certificate validation
features that browsers have makes it impossible for the user to know
if they are signing in to the legitimate site; even when they are, it
trains them that it's OK to enter credentials without validating the
site first.

Denniss & Bradley Best Current Practice [Page 15]

RFC 8252: OAuth 2.0 for Native and Mobile Apps 223

RFC 8252 OAuth 2.0 for Native Apps October 2017

Aside from the security concerns, embedded user-agents do not share
the authentication state with other apps or the browser, requiring
the user to log in for every authorization request, which is often
considered an inferior user experience.

9. IANA Considerations

This document does not require any IANA actions.

Section 7.1 specifies how private-use URI schemes are used for inter-
app communication in OAuth protocol flows. This document requires in
Section 7.1 that such schemes are based on domain names owned or
assigned to the app, as recommended in Section 3.8 of [RFC7595]. Per
Section 6 of [RFC7595], registration of domain-based URI schemes with
IANA is not required.

10. References

10.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
.

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", STD 66,
RFC 3986, DOI 10.17487/RFC3986, January 2005,
.

[RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,
.

[RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Message Syntax and Routing",
RFC 7230, DOI 10.17487/RFC7230, June 2014,
.

[RFC7595] Thaler, D., Ed., Hansen, T., and T. Hardie, "Guidelines
and Registration Procedures for URI Schemes", BCP 35,
RFC 7595, DOI 10.17487/RFC7595, June 2015,
.

[RFC7636] Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof Key
for Code Exchange by OAuth Public Clients", RFC 7636,
DOI 10.17487/RFC7636, September 2015,
.

Denniss & Bradley Best Current Practice [Page 16]

224 RFC 8252: OAuth 2.0 for Native and Mobile Apps

RFC 8252 OAuth 2.0 for Native Apps October 2017

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, .

10.2. Informative References

[RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
Threat Model and Security Considerations", RFC 6819,
DOI 10.17487/RFC6819, January 2013,
.

[RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",
RFC 7591, DOI 10.17487/RFC7591, July 2015,
.

[AppAuth] OpenID Connect Working Group, "AppAuth", September 2017,
.

[AppAuth.iOSmacOS]
Wright, S., Denniss, W., et al., "AppAuth for iOS and
macOS", February 2016,
.

[AppAuth.Android]
McGinniss, I., Denniss, W., et al., "AppAuth for Android",
February 2016, .

[SamplesForWindows]
Denniss, W., "OAuth for Apps: Samples for Windows", July
2016,
.

Denniss & Bradley Best Current Practice [Page 17]

RFC 8252: OAuth 2.0 for Native and Mobile Apps 225

RFC 8252 OAuth 2.0 for Native Apps October 2017

Appendix A. Server Support Checklist

OAuth servers that support native apps must:

1. Support private-use URI scheme redirect URIs. This is required
to support mobile operating systems. See Section 7.1.

2. Support "https" scheme redirect URIs for use with public native
app clients. This is used by apps on advanced mobile operating
systems that allow app-claimed "https" scheme URIs. See
Section 7.2.

3. Support loopback IP redirect URIs. This is required to support
desktop operating systems. See Section 7.3.

4. Not assume that native app clients can keep a secret. If secrets
are distributed to multiple installs of the same native app, they
should not be treated as confidential. See Section 8.5.

5. Support PKCE [RFC7636]. Required to protect authorization code
grants sent to public clients over inter-app communication
channels. See Section 8.1

Appendix B. Platform-Specific Implementation Details

This document primarily defines best practices in a generic manner,
referencing techniques commonly available in a variety of
environments. This non-normative section documents implementation
details of the best practice for various operating systems.

The implementation details herein are considered accurate at the time
of publishing but will likely change over time. It is hoped that
such a change won't invalidate the generic principles in the rest of
the document and that those principles should take precedence in the
event of a conflict.

B.1. iOS Implementation Details

Apps can initiate an authorization request in the browser, without
the user leaving the app, through the "SFSafariViewController" class
or its successor "SFAuthenticationSession", which implement the in-
app browser tab pattern. Safari can be used to handle requests on
old versions of iOS without in-app browser tab functionality.

To receive the authorization response, both private-use URI scheme
(referred to as "custom URL scheme") redirects and claimed "https"
scheme URIs (known as "Universal Links") are viable choices. Apps
can claim private-use URI schemes with the "CFBundleURLTypes" key in

Denniss & Bradley Best Current Practice [Page 18]

226 RFC 8252: OAuth 2.0 for Native and Mobile Apps

RFC 8252 OAuth 2.0 for Native Apps October 2017

the application's property list file, "Info.plist", and "https"
scheme URIs using the Universal Links feature with an entitlement
file in the app and an association file hosted on the domain.

Claimed "https" scheme URIs are the preferred redirect choice on iOS
9 and above due to the ownership proof that is provided by the
operating system.

A complete open-source sample is included in the AppAuth for iOS and
macOS [AppAuth.iOSmacOS] library.

B.2. Android Implementation Details

Apps can initiate an authorization request in the browser, without
the user leaving the app, through the Android Custom Tab feature,
which implements the in-app browser tab pattern. The user's default
browser can be used to handle requests when no browser supports
Custom Tabs.

Android browser vendors should support the Custom Tabs protocol (by
providing an implementation of the "CustomTabsService" class), to
provide the in-app browser tab user-experience optimization to their
users. Chrome is one such browser that implements Custom Tabs.

To receive the authorization response, private-use URI schemes are
broadly supported through Android Implicit Intents. Claimed "https"
scheme redirect URIs through Android App Links are available on
Android 6.0 and above. Both types of redirect URIs are registered in
the application's manifest.

A complete open-source sample is included in the AppAuth for Android
[AppAuth.Android] library.

B.3. Windows Implementation Details

Both traditional and Universal Windows Platform (UWP) apps can
perform authorization requests in the user's browser. Traditional
apps typically use a loopback redirect to receive the authorization
response, and listening on the loopback interface is allowed by
default firewall rules. When creating the loopback network socket,
apps SHOULD set the "SO_EXCLUSIVEADDRUSE" socket option to prevent
other apps binding to the same socket.

UWP apps can use private-use URI scheme redirects to receive the
authorization response from the browser, which will bring the app to
the foreground. Known on the platform as "URI Activation", the URI

Denniss & Bradley Best Current Practice [Page 19]

RFC 8252: OAuth 2.0 for Native and Mobile Apps 227

RFC 8252 OAuth 2.0 for Native Apps October 2017

scheme is limited to 39 characters in length, and it may include the
"." character, making short reverse domain name based schemes (as
required in Section 7.1) possible.

UWP apps can alternatively use the Web Authentication Broker API in
Single Sign-on (SSO) mode, which is an external user-agent designed
for authorization flows. Cookies are shared between invocations of
the broker but not the user's preferred browser, meaning the user
will need to log in again, even if they have an active session in
their browser; but the session created in the broker will be
available to subsequent apps that use the broker. Personalizations
the user has made to their browser, such as configuring a password
manager, may not be available in the broker. To qualify as an
external user-agent, the broker MUST be used in SSO mode.

To use the Web Authentication Broker in SSO mode, the redirect URI
must be of the form "msapp://{appSID}" where "{appSID}" is the app's
security identifier (SID), which can be found in the app's
registration information or by calling the
"GetCurrentApplicationCallbackUri" method. While Windows enforces
the URI authority on such redirects, ensuring that only the app with
the matching SID can receive the response on Windows, the URI scheme
could be claimed by apps on other platforms without the same
authority present; thus, this redirect type should be treated
similarly to private-use URI scheme redirects for security purposes.

An open-source sample demonstrating these patterns is available
[SamplesForWindows].

B.4. macOS Implementation Details

Apps can initiate an authorization request in the user's default
browser using platform APIs for opening URIs in the browser.

To receive the authorization response, private-use URI schemes are a
good redirect URI choice on macOS, as the user is returned right back
to the app they launched the request from. These are registered in
the application's bundle information property list using the
"CFBundleURLSchemes" key. Loopback IP redirects are another viable
option, and listening on the loopback interface is allowed by default
firewall rules.

A complete open-source sample is included in the AppAuth for iOS and
macOS [AppAuth.iOSmacOS] library.

Denniss & Bradley Best Current Practice [Page 20]

228 RFC 8252: OAuth 2.0 for Native and Mobile Apps

RFC 8252 OAuth 2.0 for Native Apps October 2017

B.5. Linux Implementation Details

Opening the authorization request in the user's default browser
requires a distro-specific command: "xdg-open" is one such tool.

The loopback redirect is the recommended redirect choice for desktop
apps on Linux to receive the authorization response. Apps SHOULD NOT
set the "SO_REUSEPORT" or "SO_REUSEADDR" socket options in order to
prevent other apps binding to the same socket.

Acknowledgements

The authors would like to acknowledge the work of Marius Scurtescu
and Ben Wiley Sittler, whose design for using private-use URI schemes
in native app OAuth 2.0 clients at Google formed the basis of
Section 7.1.

The following individuals contributed ideas, feedback, and wording
that shaped and formed the final specification:

Andy Zmolek, Steven E. Wright, Brian Campbell, Nat Sakimura, Eric
Sachs, Paul Madsen, Iain McGinniss, Rahul Ravikumar, Breno de
Medeiros, Hannes Tschofenig, Ashish Jain, Erik Wahlstrom, Bill
Fisher, Sudhi Umarji, Michael B. Jones, Vittorio Bertocci, Dick
Hardt, David Waite, Ignacio Fiorentino, Kathleen Moriarty, and Elwyn
Davies.

Authors' Addresses

William Denniss
Google
1600 Amphitheatre Pkwy
Mountain View, CA 94043
United States of America

Email: rfc8252@wdenniss.com
URI: http://wdenniss.com/appauth

John Bradley
Ping Identity

Phone: +1 202-630-5272
Email: rfc8252@ve7jtb.com
URI: http://www.thread-safe.com/p/appauth.html

Denniss & Bradley Best Current Practice [Page 21]

RFC 8252: OAuth 2.0 for Native and Mobile Apps 229

230 RFC 8252: OAuth 2.0 for Native and Mobile Apps

Chapter 6

Draft: OAuth 2.0 for Browser-
Based Apps

OAuth 2.0 for Browser-Based Apps describes security
requirements and other recommendations for JavaScript
apps (commonly known as Single-Page Apps) using OAuth.

As of this publication, this document is still in draft form
and is not yet an RFC. It is likely to go through some more
changes before it is finalized. That said, it has been
adopted by the working group and gone through several
rounds of changes, which means people broadly recognize
the need for this kind of guidance.

This document is intended to be a complement to the
Native App Best Current Practice, addressing the specifics
of a browser-based environment instead.

Some of the concrete recommendations it provides are
using the Authorization Code flow with PKCE instead of
using the Implicit flow, and disallowing the Password
grant by browser apps. It also provides a few different
architectural patterns available to apps in this
environment, and provides guidance on storing tokens in
browsers.

Draft: OAuth 2.0 for Browser-Based Apps 231

232 Draft: OAuth 2.0 for Browser-Based Apps

Web Authorization Protocol A. Parecki
Internet-Draft Okta
Intended status: Best Current Practice D. Waite
Expires: 17 March 2023 Ping Identity

13 September 2022

OAuth 2.0 for Browser-Based Apps
draft-ietf-oauth-browser-based-apps-11

Abstract

This specification details the security considerations and best
practices that must be taken into account when developing browser-
based applications that use OAuth 2.0.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the Web Authorization
Protocol Working Group mailing list (oauth@ietf.org), which is
archived at https://mailarchive.ietf.org/arch/browse/oauth/.

Source for this draft and an issue tracker can be found at
https://github.com/oauth-wg/oauth-browser-based-apps.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on 17 March 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the
document authors. All rights reserved.

Parecki & Waite Expires 17 March 2023 [Page 1]

Draft: OAuth 2.0 for Browser-Based Apps 233

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2022

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components
extracted from this document must include Revised BSD License text as
described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction . 3
2. Notational Conventions 3
3. Terminology . 3
4. Overview . 4
5. First-Party Applications 5
6. Application Architecture Patterns 6

6.1. Single-Domain Browser-Based Apps (not using OAuth) . . . 6
6.2. Backend For Frontend (BFF) Proxy 7
6.2.1. Security considerations 9

6.3. Token Mediating Backend 9
6.3.1. Security Considerations 11

6.4. JavaScript Applications obtaining tokens directly 11
6.4.1. Storing Tokens in Local or Session Storage 13
6.4.2. Service Worker as the OAuth Client 13

7. Authorization Code Flow 15
7.1. Initiating the Authorization Request from a Browser-Based

Application . 15
7.2. Handling the Authorization Code Redirect 16

8. Refresh Tokens . 16
9. Security Considerations 17

9.1. Cross-Site Scripting Attacks (XSS) 17
9.2. Reducing the Impact of Token Exfiltration 18
9.3. Registration of Browser-Based Apps 18
9.4. Client Authentication 18
9.5. Client Impersonation 19
9.6. Cross-Site Request Forgery Protections 19
9.7. Authorization Server Mix-Up Mitigation 19
9.8. Cross-Domain Requests 20
9.9. Content Security Policy 20
9.10. OAuth Implicit Flow 21
9.10.1. Attacks on the Implicit Flow 21
9.10.2. Countermeasures 22
9.10.3. Disadvantages of the Implicit Flow 22
9.10.4. Historic Note 23

9.11. Additional Security Considerations 24
10. IANA Considerations . 24
11. References . 24

Parecki & Waite Expires 17 March 2023 [Page 2]

234 Draft: OAuth 2.0 for Browser-Based Apps

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2022

11.1. Normative References 24
11.2. Informative References 25

Appendix A. Server Support Checklist 25
Appendix B. Document History 26
Appendix C. Acknowledgements 29
Authors' Addresses . 29

1. Introduction

This specification describes the current best practices for
implementing OAuth 2.0 authorization flows in applications executing
in a browser.

For native application developers using OAuth 2.0 and OpenID Connect,
an IETF BCP (best current practice) was published that guides
integration of these technologies. This document is formally known
as [RFC8252] or BCP 212, but nicknamed "AppAuth" after the OpenID
Foundation-sponsored set of libraries that assist developers in
adopting these practices. [RFC8252] makes specific recommendations
for how to securely implement OAuth in native applications, including
incorporating additional OAuth extensions where needed.

OAuth 2.0 for Browser-Based Apps addresses the similarities between
implementing OAuth for native apps and browser-based apps, and
includes additional considerations when running in a browser. This
is primarily focused on OAuth, except where OpenID Connect provides
additional considerations.

Many of these recommendations are derived from the OAuth 2.0 Security
Best Current Practice [oauth-security-topics] and browser-based apps
are expected to follow those recommendations as well. This draft
expands on and further restricts various recommendations in
[oauth-security-topics].

2. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
[RFC2119].

3. Terminology

In addition to the terms defined in referenced specifications, this
document uses the following terms:

"OAuth": In this document, "OAuth" refers to OAuth 2.0, [RFC6749]
and [RFC6750].

Parecki & Waite Expires 17 March 2023 [Page 3]

Draft: OAuth 2.0 for Browser-Based Apps 235

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2022

"Browser-based application": An application that is dynamically
downloaded and executed in a web browser, usually written in
JavaScript. Also sometimes referred to as a "single-page
application", or "SPA".

4. Overview

At the time that OAuth 2.0 [RFC6749] and [RFC6750] were created,
browser-based JavaScript applications needed a solution that strictly
complied with the same-origin policy. Common deployments of OAuth
2.0 involved an application running on a different domain than the
authorization server, so it was historically not possible to use the
Authorization Code flow which would require a cross-origin POST
request. This was one of the motivations for the definition of the
Implicit flow, which returns the access token in the front channel
via the fragment part of the URL, bypassing the need for a cross-
origin POST request.

However, there are several drawbacks to the Implicit flow, generally
involving vulnerabilities associated with the exposure of the access
token in the URL. See Section 9.10 for an analysis of these attacks
and the drawbacks of using the Implicit flow in browsers. Additional
attacks and security considerations can be found in
[oauth-security-topics].

In recent years, widespread adoption of Cross-Origin Resource Sharing
(CORS), which enables exceptions to the same-origin policy, allows
browser-based apps to use the OAuth 2.0 Authorization Code flow and
make a POST request to exchange the authorization code for an access
token at the token endpoint. In this flow, the access token is never
exposed in the less-secure front channel. Furthermore, adding PKCE
to the flow ensures that even if an authorization code is
intercepted, it is unusable by an attacker.

For this reason, and from other lessons learned, the current best
practice for browser-based applications is to use the OAuth 2.0
Authorization Code flow with PKCE.

Browser-based applications:

* MUST use the OAuth 2.0 Authorization Code flow with the PKCE
extension when obtaining an access token

* MUST Protect themselves against CSRF attacks by either:

- ensuring the authorization server supports PKCE, or

Parecki & Waite Expires 17 March 2023 [Page 4]

236 Draft: OAuth 2.0 for Browser-Based Apps

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2022

- by using the OAuth 2.0 "state" parameter or the OpenID Connect
"nonce" parameter to carry one-time use CSRF tokens

* MUST Register one or more redirect URIs, and use only exact
registered redirect URIs in authorization requests

OAuth 2.0 authorization servers supporting browser-based
applications:

* MUST Require exact matching of registered redirect URIs

* MUST Support the PKCE extension

* MUST NOT issue access tokens in the authorization response

* If issuing refresh tokens to browser-based applications, then:

- MUST rotate refresh tokens on each use or use sender-
constrained refresh tokens, and

- MUST set a maximum lifetime on refresh tokens or expire if they
are not used in some amount of time

5. First-Party Applications

While OAuth was initially created to allow third-party applications
to access an API on behalf of a user, it has proven to be useful in a
first-party scenario as well. First-party apps are applications
where the same organization provides both the API and the
application.

Examples of first-party applications are a web email client provided
by the operator of the email account, or a mobile banking application
created by bank itself. (Note that there is no requirement that the
application actually be developed by the same company; a mobile
banking application developed by a contractor that is branded as the
bank's application is still considered a first-party application.)
The first-party app consideration is about the user's relationship to
the application and the service.

To conform to this best practice, first-party applications using
OAuth or OpenID Connect MUST use a redirect-based flow (such as the
OAuth Authorization Code flow) as described later in this document.

The resource owner password credentials grant MUST NOT be used, as
described in [oauth-security-topics] Section 2.4. Instead, by using
the Authorization Code flow and redirecting the user to the
authorization server, this provides the authorization server the

Parecki & Waite Expires 17 March 2023 [Page 5]

Draft: OAuth 2.0 for Browser-Based Apps 237

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2022

opportunity to prompt the user for multi-factor authentication
options, take advantage of single sign-on sessions, or use third-
party identity providers. In contrast, the resource owner password
credentials grant does not provide any built-in mechanism for these,
and would instead be extended with custom code.

6. Application Architecture Patterns

Here are the main architectural patterns available when building
browser-based applications.

* single-domain, not using OAuth

* a JavaScript application with a stateful backend component

- storing tokens and proxying all requests (BFF Proxy)

- obtaining tokens and passing them to the frontend (Token
Mediating Backend)

* a JavaScript application obtaining access tokens

- via JavaScript code executed in the DOM

- through a service worker

These architectures have different use cases and considerations.

6.1. Single-Domain Browser-Based Apps (not using OAuth)

For simple system architectures, such as when the JavaScript
application is served from a domain that can share cookies with the
domain of the API (resource server) and the authorization server,
OAuth adds additional attack vectors that could be avoided with a
different solution.

In particular, using any redirect-based mechanism of obtaining an
access token enables the redirect-based attacks described in
[oauth-security-topics] Section 4, but if the application,
authorization server and resource server share a domain, then it is
unnecessary to use a redirect mechanism to communicate between them.

An additional concern with handling access tokens in a browser is
that in case of successful cross-site scripting (XSS) attack, tokens
could be read and further used or transmitted by the injected code if
no secure storage mechanism is in place.

Parecki & Waite Expires 17 March 2023 [Page 6]

238 Draft: OAuth 2.0 for Browser-Based Apps

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2022

As such, it could be considered to use an HTTP-only cookie between
the JavaScript application and API so that the JavaScript code can't
access the cookie value itself. The Secure cookie attribute should
be used to ensure the cookie is not included in unencrypted HTTP
requests. Additionally, the SameSite cookie attribute can be used to
counter some CSRF attacks, but should not be considered the extent of
the CSRF protection, as described in [draft-ietf-httpbis-rfc6265bis]

OAuth was originally created for third-party or federated access to
APIs, so it may not be the best solution in a common-domain
deployment. That said, there are still some advantages in using
OAuth even in a common-domain architecture:

* Allows more flexibility in the future, such as if you were to
later add a new domain to the system. With OAuth already in
place, adding a new domain wouldn't require any additional
rearchitecting.

* Being able to take advantage of existing library support rather
than writing bespoke code for the integration.

* Centralizing login and multifactor support, account management,
and recovery at the OAuth server, rather than making it part of
the application logic.

* Splitting of responsibilities between authenticating a user and
serving resources

Using OAuth for browser-based apps in a first-party same-domain
scenario provides these advantages, and can be accomplished by any of
the architectural patterns described below.

6.2. Backend For Frontend (BFF) Proxy

Parecki & Waite Expires 17 March 2023 [Page 7]

Draft: OAuth 2.0 for Browser-Based Apps 239

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2022

+-------------+ +--------------+ +---------------+
Authorization		Token		Resource
Endpoint		Endpoint		Server
+-------------+ +--------------+ +---------------+

^ ^ ^
| (D)| (G)|
| v v
|
| +--------------------------------------+
| | |
| | Backend for Frontend Proxy (BFF) |

(B)| | |
| +--------------------------------------+
|
| ^ ^ + ^ +
| (A)| (C)| (E)| (F)| |(H)
v v + v + v

+---+
| |
| Browser |
| |
+---+

In this architecture, commonly referred to as "backend for frontend"
or "BFF", the JavaScript code is loaded from a dynamic BFF Proxy (A)
that has the ability to execute code and handle the full
authentication flow itself. This enables the ability to keep the
call to actually get an access token outside the JavaScript
application.

Note that this BFF Proxy is not the Resource Server, it is the OAuth
client and would be accessing data at a separate resource server.

In this case, the BFF Proxy initiates the OAuth flow itself, by
redirecting the browser to the authorization endpoint (B). When the
user is redirected back, the browser delivers the authorization code
to the BFF Proxy (C), where it can then exchange it for an access
token at the token endpoint (D) using its client secret and PKCE code
verifier. The BFF Proxy then keeps the access token and refresh
token stored internally, and creates a separate session with the
browser-based app via a traditional browser cookie (E).

Parecki & Waite Expires 17 March 2023 [Page 8]

240 Draft: OAuth 2.0 for Browser-Based Apps

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2022

When the JavaScript application in the browser wants to make a
request to the Resource Server, it instead makes the request to the
BFF Proxy (F), and the BFF Proxy will make the request with the
access token to the Resource Server (G), and forward the response (H)
back to the browser.

(Common examples of this architecture are an Angular front-end with a
.NET backend, or a React front-end with a Spring Boot backend.)

The BFF Proxy SHOULD be considered a confidential client, and issued
its own client secret. The BFF Proxy SHOULD use the OAuth 2.0
Authorization Code grant with PKCE to initiate a request for an
access token. Detailed recommendations for confidential clients can
be found in [oauth-security-topics] Section 2.1.1.

In this scenario, the connection between the browser and BFF Proxy
SHOULD be a session cookie provided by the BFF Proxy.

6.2.1. Security considerations

Security of the connection between code running in the browser and
this BFF Proxy is assumed to utilize browser-level protection
mechanisms. Details are out of scope of this document, but many
recommendations can be found in the OWASP Cheat Sheet series
(https://cheatsheetseries.owasp.org/), such as setting an HTTP-only
and Secure cookie to authenticate the session between the browser and
BFF Proxy. Additionally, cookies MUST be protected from leakage by
other means, such as logs.

In this architecture, tokens are never sent to the front-end and are
never accessible by any JavaScript code, so it fully protects against
XSS attackers stealing tokens. However, an XSS attacker may still be
able to make authenticated requests to the BFF Proxy which will in
turn make requests to the resource server including the user's
legitimate token. While the attacker is unable to extract and use
the access token elsewhere, they can still effectively make
authenticated requests to the resource server.

6.3. Token Mediating Backend

An alternative to a full BFF where all resource requests go through
the backend is to use a token mediating backend which obtains the
tokens and then forwards the tokens to the browser.

Parecki & Waite Expires 17 March 2023 [Page 9]

Draft: OAuth 2.0 for Browser-Based Apps 241

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2022

+-------------+ +--------------+ +---------------+
Authorization		Token		Resource
Endpoint		Endpoint		Server
+-------------+ +--------------+ +---------------+

^ ^ ^
| (D)| |
| v |
| |
| +-------------------------+ |
| | | |
| | Token Mediating Backend | |

(B)| | | |
| +-------------------------+ |
| |
| ^ ^ + |
| (A)| (C)| (E)| (F)|
v v + v +

+---+
| |
| Browser |
| |
+---+

The frontend code makes a request to the Token Mediating Backend (A),
and the backend initiates the OAuth flow itself, by redirecting the
browser to the authorization endpoint (B). When the user is
redirected back, the browser delivers the authorization code to the
application server (C), where it can then exchange it for an access
token at the token endpoint (D) using its client secret and PKCE code
verifier. The backend delivers the tokens to the browser (E), which
stores them for later use. The browser makes requests to the
resource server directly (F) including the token it has stored.

The main advantage this architecture provides over the full BFF
architecture previously described is that the backend service is only
involved in the acquisition of tokens, and doesn't have to proxy
every request in the future. Routing every API call through a
backend can be expensive in terms of performance and latency, and can
create challenges in deploying the application across many regions.
Instead, routing only the token acquisition through a backend means
fewer requests are made to the backend. This improves the
performance and reduces the latency of requests from the frontend,
and reduces the amount of infrastructure needed in the backend.

Parecki & Waite Expires 17 March 2023 [Page 10]

242 Draft: OAuth 2.0 for Browser-Based Apps

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2022

Similar to the previously described BFF Proxy pattern, The Token
Mediating Backend SHOULD be considered a confidential client, and
issued its own client secret. The Token Mediating Backend SHOULD use
the OAuth 2.0 Authorization Code grant with PKCE to initiate a
request for an access token. Detailed recommendations for
confidential clients can be found in [oauth-security-topics]
Section 2.1.1.

In this scenario, the connection between the browser and Token
Mediating Backend SHOULD be a session cookie provided by the backend.

The Token Mediating Backend SHOULD cache tokens it obtains from the
authorization server such that when the frontend needs to obtain new
tokens, it can do so without the additional round trip to the
authorization server if the tokens are still valid.

The frontend SHOULD NOT persist tokens in local storage or similar
mechanisms; instead, the frontend SHOULD store tokens only in memory,
and make a new request to the backend if no tokens exist. This
provides fewer attack vectors for token exfiltration should an XSS
attack be successful.

Editor's Note: A method of implementing this architecture is
described by the [tmi-bff] draft, although it is currently an expired
individual draft and has not been proposed for adoption to the OAuth
Working Group.

6.3.1. Security Considerations

If the backend caches tokens from the authorization server, it
presents scopes elevation risks if applied indiscriminately. If the
token cached by the authorization server features a superset of the
scopes requested by the frontend, the backend SHOULD NOT return it to
the frontend; instead it SHOULD perform a new request with the
smaller set of scopes to the authorization server.

In the case of a successful XSS attack, the attacker may be able to
access the tokens if the tokens are persisted in the frontend, but is
less likely to be able to access the tokens if they are stored only
in memory. However, a successful XSS attack will also allow the
attacker to call the Token Mediating Backend itself to retrieve the
cached token or start a new OAuth flow.

6.4. JavaScript Applications obtaining tokens directly

This section describes the architecture of a JavaScript application
obtaining tokens from the authorization itself, with no intermediate
proxy server.

Parecki & Waite Expires 17 March 2023 [Page 11]

Draft: OAuth 2.0 for Browser-Based Apps 243

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2022

+---------------+ +--------------+
Authorization		Resource
Server		Server
+---------------+ +--------------+

^ ^ ^ +
| | | |
|(B) |(C) |(D) |(E)
| | | |
| | | |
+ v + v

+-----------------+ +-------------------------------+
	(A)	
Static Web Host	+----->	Browser
+-----------------+ +-------------------------------+

In this architecture, the JavaScript code is first loaded from a
static web host into the browser (A), and the application then runs
in the browser. This application is considered a public client,
since there is no way to issue it a client secret in this model.

The code in the browser initiates the Authorization Code flow with
the PKCE extension (described in Section 7) (B) above, and obtains an
access token via a POST request (C).

The application is then responsible for storing the access token (and
optional refresh token) as securely as possible using appropriate
browser APIs.

When the JavaScript application in the browser wants to make a
request to the Resource Server, it can interact with the Resource
Server directly. It includes the access token in the request (D) and
receives the Resource Server's response (E).

In this scenario, the Authorization Server and Resource Server MUST
support the necessary CORS headers to enable the JavaScript code to
make these POST requests from the domain on which the script is
executing. (See Section 9.8 for additional details.)

Parecki & Waite Expires 17 March 2023 [Page 12]

244 Draft: OAuth 2.0 for Browser-Based Apps

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2022

Besides the general risks of XSS, if tokens are stored or handled by
the browser, XSS poses an additional risk of token exfiltration. In
this architecture, the JavaScript application is storing the access
token so that it can make requests directly to the resource server.
There are two primary methods by which the application can store the
token, with different security considerations of each.

6.4.1. Storing Tokens in Local or Session Storage

If the JavaScript in the DOM will be making requests directly to the
resource server, the simplest mechanism is to store the tokens
somewhere accessible to the DOM.

In case of a successful XSS attack, the injected code will have full
access to the stored tokens and can exfiltrate them to the attacker.

6.4.2. Service Worker as the OAuth Client

In this scenario, a Service Worker (https://developer.mozilla.org/en-
US/docs/Web/API/Service_Worker_API) is responsible for obtaining
tokens from the authorization server and making requests to the
resource server.

Service workers are run in a separate context from the DOM, have no
access to the DOM, and the DOM has no access to the service worker.
This makes service workers the most secure place to store tokens, as
an XSS attack is unable to exfiltrate the tokens.

In this architecture, a service worker intercepts calls from the
frontend to the resource server. As such, it completely isolates
calls to the authorization server from XSS attack surface, as all
tokens are safely kept in the service worker context without any
access from other JavaScript contexts. The service worker is then
solely responsible for adding the token in the authorization header
to calls to the resource server.

Parecki & Waite Expires 17 March 2023 [Page 13]

Draft: OAuth 2.0 for Browser-Based Apps 245

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2022

Resource Authorization
User Application Service Worker server server
browse			
------------>			
	------------------->	/authorize	
	-->		
		redirect w/ authorization code	
	< -		
		token request w/ auth code	/token
		-->	
		<- -	
	resource request		
	-------------------> resource request with token		
		---------------------------->	
User Application Service Worker Resource Authorization

server server

6.4.2.1. Implementation Guidelines

* The service worker MUST initiate the OAuth 2.0 Authorization Code
grant with PKCE itself.

* The service worker MUST intercept the authorization code when the
authorization server redirects to the application.

* The service worker implementation MUST then initiate the token
request itself.

* The service worker MUST not transmit tokens, authorization codes
or PKCE secrets (e.g. code verifier) to the frontend application.

* The service worker MUST block authorization requests and token
requests initiating from the frontend application in order to
avoid any front-end side-channel for getting credentials: the only
way of starting the authorization flow is through the service
worker. This protects against re-authorization from XSS-injected
code.

* The application MUST register the Service Worker before running
any code interacting with the user.

Parecki & Waite Expires 17 March 2023 [Page 14]

246 Draft: OAuth 2.0 for Browser-Based Apps

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2022

6.4.2.2. Security Considerations

A successful XSS attack on an application using this Service Worker
pattern would be unable to exfiltrate existing tokens stored by the
application. However, an XSS attacker may still be able to cause the
Service Worker to make authenticated requests to the resource server
including the user's legitimate token.

In case of a vulnerability leading to the Service Worker not being
registered, an XSS attack would result in the attacker being able to
initiate a new OAuth flow to obtain new tokens itself.

To prevent the Service Worker from being unregistered, the Service
Worker registration must happen as first step of the application
start, and before any user interaction. Starting the Service worker
before the rest of the application, and the fact that there is no way
to remove a Service Worker from an active application
(https://www.w3.org/TR/service-workers/#navigator-service-worker-
unregister), reduces the risk of an XSS attack being able to prevent
the Service Worker from being registered.

7. Authorization Code Flow

Browser-based applications that are public clients and use the
Authorization Code grant type described in Section 4.1 of OAuth 2.0
[RFC6749] MUST also follow these additional requirements described in
this section.

7.1. Initiating the Authorization Request from a Browser-Based
Application

Browser-based applications that are public clients MUST implement the
Proof Key for Code Exchange (PKCE [RFC7636]) extension when obtaining
an access token, and authorization servers MUST support and enforce
PKCE for such clients.

The PKCE extension prevents an attack where the authorization code is
intercepted and exchanged for an access token by a malicious client,
by providing the authorization server with a way to verify the client
instance that exchanges the authorization code is the same one that
initiated the flow.

Browser-based applications MUST prevent CSRF attacks against their
redirect URI. This can be accomplished by any of the below:

* using PKCE, and confirming that the authorization server supports
PKCE

Parecki & Waite Expires 17 March 2023 [Page 15]

Draft: OAuth 2.0 for Browser-Based Apps 247

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2022

* using a unique value for the OAuth 2.0 "state" parameter

* if the application is using OpenID Connect, by using the OpenID
Connect "nonce" parameter

7.2. Handling the Authorization Code Redirect

Authorization servers MUST require an exact match of a registered
redirect URI. As described in [oauth-security-topics] Section 4.1.1.
this helps to prevent attacks targeting the authorization code.

8. Refresh Tokens

Refresh tokens provide a way for applications to obtain a new access
token when the initial access token expires. With public clients,
the risk of a leaked refresh token is greater than leaked access
tokens, since an attacker may be able to continue using the stolen
refresh token to obtain new access tokens potentially without being
detectable by the authorization server.

Javascript-accessible storage mechanisms like _Local Storage_ provide
an attacker with several opportunities by which a refresh token can
be leaked, just as with access tokens. As such, these mechanisms are
considered a higher risk for handling refresh tokens.

Authorization servers may choose whether or not to issue refresh
tokens to browser-based applications. [oauth-security-topics]
describes some additional requirements around refresh tokens on top
of the recommendations of [RFC6749]. Applications and authorization
servers conforming to this BCP MUST also follow the recommendations
in [oauth-security-topics] around refresh tokens if refresh tokens
are issued to browser-based applications.

In particular, authorization servers:

* MUST either rotate refresh tokens on each use OR use sender-
constrained refresh tokens as described in [oauth-security-topics]
Section 4.13.2

* MUST either set a maximum lifetime on refresh tokens OR expire if
the refresh token has not been used within some amount of time

* MUST NOT extend the lifetime of the new refresh token beyond the
lifetime of the initial refresh token

Parecki & Waite Expires 17 March 2023 [Page 16]

248 Draft: OAuth 2.0 for Browser-Based Apps

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2022

* upon issuing a rotated refresh token, MUST NOT extend the lifetime
of the new refresh token beyond the lifetime of the initial
refresh token if the refresh token has a preestablished expiration
time

For example:

* A user authorizes an application, issuing an access token that
lasts 1 hour, and a refresh token that lasts 24 hours

* After 1 hour, the initial access token expires, so the application
uses the refresh token to get a new access token

* The authorization server returns a new access token that lasts 1
hour, and a new refresh token that lasts 23 hours

* This continues until 24 hours pass from the initial authorization

* At this point, when the application attempts to use the refresh
token after 24 hours, the request will fail and the application
will have to involve the user in a new authorization request

By limiting the overall refresh token lifetime to the lifetime of the
initial refresh token, this ensures a stolen refresh token cannot be
used indefinitely.

Authorization servers MAY set different policies around refresh token
issuance, lifetime and expiration for browser-based applications
compared to other public clients.

9. Security Considerations

9.1. Cross-Site Scripting Attacks (XSS)

For all known architectures, all precautions MUST be taken to prevent
cross-site scripting (XSS) attacks. In general, XSS attacks are a
huge risk, and can lead to full compromise of the application.

If tokens are handled or accessible by the browser, there is a risk
that a XSS attack can lead to token exfiltration.

Even if tokens are never sent to the frontend and are never
accessible by any JavaScript code, an XSS attacker may still be able
to make authenticated requests to the resource server by mimicking
legitimate code in the DOM. For example, the attacker may make a
request to the BFF Proxy which will in turn make requests to the
resource server including the user's legitimate token. In the
Service Worker example, the attacker may make an API call to the

Parecki & Waite Expires 17 March 2023 [Page 17]

Draft: OAuth 2.0 for Browser-Based Apps 249

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2022

Service Worker which will then turn around and make a request to the
resource server with the legitimate token. While the attacker is
unable to extract and use the access token elsewhere, they can still
effectively make authenticated requests to the resource server to
steal or modify data.

9.2. Reducing the Impact of Token Exfiltration

If tokens are ever accessible to the browser or to any JavaScript
code, there is always a risk of token exfiltration. The particular
risk may change depending on the architecture chosen. Regardless of
the particular architecture chosen, these additional security
considerations limit the impact of token exfiltration:

* The authorization server SHOULD restrict access tokens to strictly
needed resources, to avoid escalating the scope of the attack.

* To avoid information disclosure from ID Tokens, the authorization
server SHOULD NOT include any ID token claims that aren't used by
the frontend.

* Refresh tokens should be used in accordance with the guidance in
Section 8.

9.3. Registration of Browser-Based Apps

Browser-based applications (with no backend) are considered public
clients as defined by Section 2.1 of OAuth 2.0 [RFC6749], and MUST be
registered with the authorization server as such. Authorization
servers MUST record the client type in the client registration
details in order to identify and process requests accordingly.

Authorization servers MUST require that browser-based applications
register one or more redirect URIs.

9.4. Client Authentication

Since a browser-based application's source code is delivered to the
end-user's browser, it cannot contain provisioned secrets. As such,
a browser-based app with native OAuth support is considered a public
client as defined by Section 2.1 of OAuth 2.0 [RFC6749].

Parecki & Waite Expires 17 March 2023 [Page 18]

250 Draft: OAuth 2.0 for Browser-Based Apps

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2022

Secrets that are statically included as part of an app distributed to
multiple users should not be treated as confidential secrets, as one
user may inspect their copy and learn the shared secret. For this
reason, and those stated in Section 5.3.1 of [RFC6819], it is NOT
RECOMMENDED for authorization servers to require client
authentication of browser-based applications using a shared secret,
as this serves little value beyond client identification which is
already provided by the client_id request parameter.

Authorization servers that still require a statically included shared
secret for SPA clients MUST treat the client as a public client, and
not accept the secret as proof of the client's identity. Without
additional measures, such clients are subject to client impersonation
(see Section 9.5 below).

9.5. Client Impersonation

As stated in Section 10.2 of OAuth 2.0 [RFC6749], the authorization
server SHOULD NOT process authorization requests automatically
without user consent or interaction, except when the identity of the
client can be assured.

If authorization servers restrict redirect URIs to a fixed set of
absolute HTTPS URIs, preventing the use of wildcard domains, wildcard
paths, or wildcard query string components, this exact match of
registered absolute HTTPS URIs MAY be accepted by authorization
servers as proof of identity of the client for the purpose of
deciding whether to automatically process an authorization request
when a previous request for the client_id has already been approved.

9.6. Cross-Site Request Forgery Protections

Clients MUST prevent Cross-Site Request Forgery (CSRF) attacks
against their redirect URI. Clients can accomplish this by either
ensuring the authorization server supports PKCE and relying on the
CSRF protection that PKCE provides, or if the client is also an
OpenID Connect client, using the OpenID Connect "nonce" parameter, or
by using the "state" parameter to carry one-time-use CSRF tokens as
described in Section 7.1.

See Section 2.1 of [oauth-security-topics] for additional details.

9.7. Authorization Server Mix-Up Mitigation

Authorization server mix-up attacks mark a severe threat to every
client that supports at least two authorization servers. To conform
to this BCP such clients MUST apply countermeasures to defend against
mix-up attacks.

Parecki & Waite Expires 17 March 2023 [Page 19]

Draft: OAuth 2.0 for Browser-Based Apps 251

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2022

It is RECOMMENDED to defend against mix-up attacks by identifying and
validating the issuer of the authorization response. This can be
achieved either by using the "iss" response parameter, as defined in
[oauth-iss-auth-resp], or by using the "iss" Claim of the ID token
when OpenID Connect is used.

Alternative countermeasures, such as using distinct redirect URIs for
each issuer, SHOULD only be used if identifying the issuer as
described is not possible.

Section 4.4 of [oauth-security-topics] provides additional details
about mix-up attacks and the countermeasures mentioned above.

9.8. Cross-Domain Requests

To complete the Authorization Code flow, the browser-based
application will need to exchange the authorization code for an
access token at the token endpoint. If the authorization server
provides additional endpoints to the application, such as metadata
URLs, dynamic client registration, revocation, introspection,
discovery or user info endpoints, these endpoints may also be
accessed by the browser-based app. Since these requests will be made
from a browser, authorization servers MUST support the necessary CORS
headers (defined in [Fetch]) to allow the browser to make the
request.

This specification does not include guidelines for deciding whether a
CORS policy for the token endpoint should be a wildcard origin or
more restrictive. Note, however, that the browser will attempt to
GET or POST to the API endpoint before knowing any CORS policy; it
simply hides the succeeding or failing result from JavaScript if the
policy does not allow sharing.

9.9. Content Security Policy

A browser-based application that wishes to use either long-lived
refresh tokens or privileged scopes SHOULD restrict its JavaScript
execution to a set of statically hosted scripts via a Content
Security Policy ([CSP2]) or similar mechanism. A strong Content
Security Policy can limit the potential attack vectors for malicious
JavaScript to be executed on the page.

Parecki & Waite Expires 17 March 2023 [Page 20]

252 Draft: OAuth 2.0 for Browser-Based Apps

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2022

9.10. OAuth Implicit Flow

The OAuth 2.0 Implicit flow (defined in Section 4.2 of OAuth 2.0
[RFC6749]) works by the authorization server issuing an access token
in the authorization response (front channel) without the code
exchange step. In this case, the access token is returned in the
fragment part of the redirect URI, providing an attacker with several
opportunities to intercept and steal the access token.

Authorization servers MUST NOT issue access tokens in the
authorization response, and MUST issue access tokens only from the
token endpoint.

9.10.1. Attacks on the Implicit Flow

Many attacks on the Implicit flow described by [RFC6819] and
Section 4.1.2 of [oauth-security-topics] do not have sufficient
mitigation strategies. The following sections describe the specific
attacks that cannot be mitigated while continuing to use the Implicit
flow.

9.10.1.1. Threat: Manipulation of the Redirect URI

If an attacker is able to cause the authorization response to be sent
to a URI under their control, they will directly get access to the
authorization response including the access token. Several methods
of performing this attack are described in detail in
[oauth-security-topics].

9.10.1.2. Threat: Access Token Leak in Browser History

An attacker could obtain the access token from the browser's history.
The countermeasures recommended by [RFC6819] are limited to using
short expiration times for tokens, and indicating that browsers
should not cache the response. Neither of these fully prevent this
attack, they only reduce the potential damage.

Additionally, many browsers now also sync browser history to cloud
services and to multiple devices, providing an even wider attack
surface to extract access tokens out of the URL.

This is discussed in more detail in Section 4.3.2 of
[oauth-security-topics].

Parecki & Waite Expires 17 March 2023 [Page 21]

Draft: OAuth 2.0 for Browser-Based Apps 253

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2022

9.10.1.3. Threat: Manipulation of Scripts

An attacker could modify the page or inject scripts into the browser
through various means, including when the browser's HTTPS connection
is being intercepted by, for example, a corporate network. While
man-in-the-middle attacks are typically out of scope of basic
security recommendations to prevent, in the case of browser-based
apps they are much easier to perform. An injected script can enable
an attacker to have access to everything on the page.

The risk of a malicious script running on the page may be amplified
when the application uses a known standard way of obtaining access
tokens, namely that the attacker can always look at the
window.location variable to find an access token. This threat
profile is different from an attacker specifically targeting an
individual application by knowing where or how an access token
obtained via the Authorization Code flow may end up being stored.

9.10.1.4. Threat: Access Token Leak to Third-Party Scripts

It is relatively common to use third-party scripts in browser-based
apps, such as analytics tools, crash reporting, and even things like
a Facebook or Twitter "like" button. In these situations, the author
of the application may not be able to be fully aware of the entirety
of the code running in the application. When an access token is
returned in the fragment, it is visible to any third-party scripts on
the page.

9.10.2. Countermeasures

In addition to the countermeasures described by [RFC6819] and
[oauth-security-topics], using the Authorization Code flow with PKCE
extension prevents the attacks described above by avoiding returning
the access token in the redirect response at all.

When PKCE is used, if an authorization code is stolen in transport,
the attacker is unable to do anything with the authorization code.

9.10.3. Disadvantages of the Implicit Flow

There are several additional reasons the Implicit flow is
disadvantageous compared to using the standard Authorization Code
flow.

Parecki & Waite Expires 17 March 2023 [Page 22]

254 Draft: OAuth 2.0 for Browser-Based Apps

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2022

* OAuth 2.0 provides no mechanism for a client to verify that a
particular access token was intended for that client, which could
lead to misuse and possible impersonation attacks if a malicious
party hands off an access token it retrieved through some other
means to the client.

* Returning an access token in the front-channel redirect gives the
authorization server no assurance that the access token will
actually end up at the application, since there are many ways this
redirect may fail or be intercepted.

* Supporting the Implicit flow requires additional code, more upkeep
and understanding of the related security considerations, while
limiting the authorization server to just the Authorization Code
flow reduces the attack surface of the implementation.

* If the JavaScript application gets wrapped into a native app, then
[RFC8252] also requires the use of the Authorization Code flow
with PKCE anyway.

In OpenID Connect, the ID Token is sent in a known format (as a JWT),
and digitally signed. Returning an ID token using the Implicit flow
(response_type=id_token) requires the client validate the JWT
signature, as malicious parties could otherwise craft and supply
fraudulent ID tokens. Performing OpenID Connect using the
Authorization Code flow provides the benefit of the client not
needing to verify the JWT signature, as the ID token will have been
fetched over an HTTPS connection directly from the authorization
server. Additionally, in many cases an application will request both
an ID token and an access token, so it is simplier and provides fewer
attack vectors to obtain both via the Authorization Code flow.

9.10.4. Historic Note

Historically, the Implicit flow provided an advantage to browser-
based apps since JavaScript could always arbitrarily read and
manipulate the fragment portion of the URL without triggering a page
reload. This was necessary in order to remove the access token from
the URL after it was obtained by the app.

Modern browsers now have the Session History API (described in
"Session history and navigation" of [HTML]), which provides a
mechanism to modify the path and query string component of the URL
without triggering a page reload. This means modern browser-based
apps can use the unmodified OAuth 2.0 Authorization Code flow, since
they have the ability to remove the authorization code from the query
string without triggering a page reload thanks to the Session History
API.

Parecki & Waite Expires 17 March 2023 [Page 23]

Draft: OAuth 2.0 for Browser-Based Apps 255

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2022

9.11. Additional Security Considerations

The OWASP Foundation (https://www.owasp.org/) maintains a set of
security recommendations and best practices for web applications, and
it is RECOMMENDED to follow these best practices when creating an
OAuth 2.0 Browser-Based application.

10. IANA Considerations

This document does not require any IANA actions.

11. References

11.1. Normative References

[CSP2] West, M., "Content Security Policy", October 2018.

[draft-ietf-httpbis-rfc6265bis]
Chen, L., Englehardt, S., West, M., and J. Wilander,
"Cookies: HTTP State Management Mechanism", October 2021.

[Fetch] whatwg, "Fetch", 2018.

[oauth-iss-auth-resp]
Meyer zu Selhausen, K. and D. Fett, "OAuth 2.0
Authorization Server Issuer Identifier in Authorization
Response", January 2021.

[oauth-security-topics]
Lodderstedt, T., Bradley, J., Labunets, A., and D. Fett,
"OAuth 2.0 Security Best Current Practice", April 2021.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
.

[RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,
.

[RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
Framework: Bearer Token Usage", RFC 6750,
DOI 10.17487/RFC6750, October 2012,
.

Parecki & Waite Expires 17 March 2023 [Page 24]

256 Draft: OAuth 2.0 for Browser-Based Apps

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2022

[RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
Threat Model and Security Considerations", RFC 6819,
DOI 10.17487/RFC6819, January 2013,
.

[RFC7636] Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof Key
for Code Exchange by OAuth Public Clients", RFC 7636,
DOI 10.17487/RFC7636, September 2015,
.

[RFC8252] Denniss, W. and J. Bradley, "OAuth 2.0 for Native Apps",
BCP 212, RFC 8252, DOI 10.17487/RFC8252, October 2017,
.

11.2. Informative References

[HTML] whatwg, "HTML", 2020.

[tmi-bff] Bertocci, V. and B. Cambpell, "Token Mediating and session
Information Backend For Frontend", April 2021.

Appendix A. Server Support Checklist

OAuth authorization servers that support browser-based apps MUST:

1. Require "https" scheme redirect URIs.

2. Require exact matching of registered redirect URIs.

3. Support PKCE [RFC7636]. Required to protect authorization code
grants sent to public clients. See Section 7.1

4. Support cross-domain requests at the token endpoint in order to
allow browsers to make the authorization code exchange request.
See Section 9.8

5. Not assume that browser-based clients can keep a secret, and
SHOULD NOT issue secrets to applications of this type.

6. Not support the Resource Owner Password grant for browser-based
clients.

7. Follow the [oauth-security-topics] recommendations on refresh
tokens, as well as the additional requirements described in
Section 8.

Parecki & Waite Expires 17 March 2023 [Page 25]

Draft: OAuth 2.0 for Browser-Based Apps 257

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2022

Appendix B. Document History

[[To be removed from the final specification]]

-11

* Added a new architecture pattern: Token Mediating Backend

* Revised and added clarifications for the Service Worker pattern

* Editorial improvements in descriptions of the different
architectures

* Rephrased headers

-10

* Revised the names of the architectural patterns

* Added a new pattern using a service worker as the OAuth client to
manage tokens

* Added some considerations when storing tokens in Local or Session
Storage

-09

* Provide additional context for the same-domain architecture
pattern

* Added reference to draft-ietf-httpbis-rfc6265bis to clarify that
SameSite is not the only CSRF protection measure needed

* Editorial improvements

-08

* Added a note to use the "Secure" cookie attribute in addition to
SameSite etc

* Updates to bring this draft in sync with the latest Security BCP

* Updated text for mix-up countermeasures to reference the new "iss"
extension

* Changed "SHOULD" for refresh token rotation to MUST either use
rotation or sender-constraining to match the Security BCP

Parecki & Waite Expires 17 March 2023 [Page 26]

258 Draft: OAuth 2.0 for Browser-Based Apps

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2022

* Fixed references to other specs and extensions

* Editorial improvements in descriptions of the different
architectures

-07

* Clarify PKCE requirements apply only to issuing access tokens

* Change "MUST" to "SHOULD" for refresh token rotation

* Editorial clarifications

-06

* Added refresh token requirements to AS summary

* Editorial clarifications

-05

* Incorporated editorial and substantive feedback from Mike Jones

* Added references to "nonce" as another way to prevent CSRF attacks

* Updated headers in the Implicit Flow section to better represent
the relationship between the paragraphs

-04

* Disallow the use of the Password Grant

* Add PKCE support to summary list for authorization server
requirements

* Rewrote refresh token section to allow refresh tokens if they are
time-limited, rotated on each use, and requiring that the rotated
refresh token lifetimes do not extend past the lifetime of the
initial refresh token, and to bring it in line with the Security
BCP

* Updated recommendations on using state to reflect the Security BCP

* Updated server support checklist to reflect latest changes

* Updated the same-domain JS architecture section to emphasize the
architecture rather than domain

Parecki & Waite Expires 17 March 2023 [Page 27]

Draft: OAuth 2.0 for Browser-Based Apps 259

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2022

* Editorial clarifications in the section that talks about OpenID
Connect ID tokens

-03

* Updated the historic note about the fragment URL clarifying that
the Session History API means browsers can use the unmodified
authorization code flow

* Rephrased "Authorization Code Flow" intro paragraph to better lead
into the next two sections

* Softened "is likely a better decision to avoid using OAuth
entirely" to "it may be..." for common-domain deployments

* Updated abstract to not be limited to public clients, since the
later sections talk about confidential clients

* Removed references to avoiding OpenID Connect for same-domain
architectures

* Updated headers to better describe architectures (Apps Served from
a Static Web Server -> JavaScript Applications without a Backend)

* Expanded "same-domain architecture" section to better explain the
problems that OAuth has in this scenario

* Referenced Security BCP in implicit flow attacks where possible

* Minor typo corrections

-02

* Rewrote overview section incorporating feedback from Leo Tohill

* Updated summary recommendation bullet points to split out
application and server requirements

* Removed the allowance on hostname-only redirect URI matching, now
requiring exact redirect URI matching

* Updated Section 6.2 to drop reference of SPA with a backend
component being a public client

* Expanded the architecture section to explicitly mention three
architectural patterns available to JS apps

-01

Parecki & Waite Expires 17 March 2023 [Page 28]

260 Draft: OAuth 2.0 for Browser-Based Apps

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2022

* Incorporated feedback from Torsten Lodderstedt

* Updated abstract

* Clarified the definition of browser-based apps to not exclude
applications cached in the browser, e.g. via Service Workers

* Clarified use of the state parameter for CSRF protection

* Added background information about the original reason the
implicit flow was created due to lack of CORS support

* Clarified the same-domain use case where the SPA and API share a
cookie domain

* Moved historic note about the fragment URL into the Overview

Appendix C. Acknowledgements

The authors would like to acknowledge the work of William Denniss and
John Bradley, whose recommendation for native apps informed many of
the best practices for browser-based applications. The authors would
also like to thank Hannes Tschofenig and Torsten Lodderstedt, the
attendees of the Internet Identity Workshop 27 session at which this
BCP was originally proposed, and the following individuals who
contributed ideas, feedback, and wording that shaped and formed the
final specification:

Annabelle Backman, Brian Campbell, Brock Allen, Christian Mainka,
Daniel Fett, George Fletcher, Hannes Tschofenig, Janak Amarasena,
John Bradley, Joseph Heenan, Justin Richer, Karl McGuinness, Karsten
Meyer zu Selhausen, Leo Tohill, Mike Jones, Philippe De Ryck, Tomek
Stojecki, Torsten Lodderstedt, Vittorio Bertocci and Yannick Majoros.

Authors' Addresses

Aaron Parecki
Okta
Email: aaron@parecki.com
URI: https://aaronparecki.com

David Waite
Ping Identity
Email: david@alkaline-solutions.com

Parecki & Waite Expires 17 March 2023 [Page 29]

Draft: OAuth 2.0 for Browser-Based Apps 261

262 Draft: OAuth 2.0 for Browser-Based Apps

Chapter 7

Draft: OAuth 2.0 Security Best
Current Practice

OAuth 2.0 Security Best Current Practice describes security
requirements and other recommendations for clients and
servers implementing OAuth 2.0. This is a new Best
Current Practice around OAuth security, intended to
capture experience gained from live deployments in the
years since the first Security Considerations RFC was
published in 2013.

This spec describes some more advanced threats and
attacks, as well as recommends against using the Implicit
or Password flows entirely.

This spec is also still in draft form, so will likely go through
a few more changes before it is finalized as an RFC.

Some of the concrete recommendations in this draft are
deprecating the Implicit flow and Password grant, and
recommending that a new refresh token is issued every
time one is used.

Draft: OAuth 2.0 Security Best Current Practice 263

264 Draft: OAuth 2.0 Security Best Current Practice

Web Authorization Protocol T. Lodderstedt
Internet-Draft yes.com
Intended status: Best Current Practice J. Bradley
Expires: 31 March 2023 Yubico

A. Labunets
Independent Researcher

D. Fett
yes.com

27 September 2022

OAuth 2.0 Security Best Current Practice
draft-ietf-oauth-security-topics-21

Abstract

This document describes best current security practice for OAuth 2.0.
It updates and extends the OAuth 2.0 Security Threat Model to
incorporate practical experiences gathered since OAuth 2.0 was
published and covers new threats relevant due to the broader
application of OAuth 2.0.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on 31 March 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights

Lodderstedt, et al. Expires 31 March 2023 [Page 1]

Draft: OAuth 2.0 Security Best Current Practice 265

Internet-Draft oauth-security-topics September 2022

and restrictions with respect to this document. Code Components
extracted from this document must include Revised BSD License text as
described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction . 3
1.1. Structure . 5
1.2. Conventions and Terminology 5

2. Best Practices . 5
2.1. Protecting Redirect-Based Flows 5
2.1.1. Authorization Code Grant 6
2.1.2. Implicit Grant 7

2.2. Token Replay Prevention 8
2.2.1. Access Tokens . 8
2.2.2. Refresh Tokens 8

2.3. Access Token Privilege Restriction 8
2.4. Resource Owner Password Credentials Grant 9
2.5. Client Authentication 9
2.6. Other Recommendations 9

3. The Updated OAuth 2.0 Attacker Model 10
4. Attacks and Mitigations 12

4.1. Insufficient Redirect URI Validation 13
4.1.1. Redirect URI Validation Attacks on Authorization Code

Grant . 13
4.1.2. Redirect URI Validation Attacks on Implicit Grant . . 15
4.1.3. Countermeasures 16

4.2. Credential Leakage via Referer Headers 17
4.2.1. Leakage from the OAuth Client 17
4.2.2. Leakage from the Authorization Server 17
4.2.3. Consequences . 18
4.2.4. Countermeasures 18

4.3. Credential Leakage via Browser History 19
4.3.1. Authorization Code in Browser History 19
4.3.2. Access Token in Browser History 19

4.4. Mix-Up Attacks . 20
4.4.1. Attack Description 20
4.4.2. Countermeasures 22

4.5. Authorization Code Injection 23
4.5.1. Attack Description 24
4.5.2. Discussion . 25
4.5.3. Countermeasures 26
4.5.4. Limitations . 28

4.6. Access Token Injection 28
4.6.1. Countermeasures 28

4.7. Cross Site Request Forgery 29
4.7.1. Countermeasures 29

Lodderstedt, et al. Expires 31 March 2023 [Page 2]

266 Draft: OAuth 2.0 Security Best Current Practice

Internet-Draft oauth-security-topics September 2022

4.8. PKCE Downgrade Attack 30
4.8.1. Attack Description 30
4.8.2. Countermeasures 31

4.9. Access Token Leakage at the Resource Server 32
4.9.1. Access Token Phishing by Counterfeit Resource

Server . 32
4.9.2. Compromised Resource Server 37

4.10. Open Redirection . 38
4.10.1. Client as Open Redirector 38
4.10.2. Authorization Server as Open Redirector 38

4.11. 307 Redirect . 39
4.12. TLS Terminating Reverse Proxies 40
4.13. Refresh Token Protection 41
4.13.1. Discussion . 41
4.13.2. Recommendations 41

4.14. Client Impersonating Resource Owner 43
4.14.1. Countermeasures 43

4.15. Clickjacking . 43
4.16. Authorization Server Redirecting to Phishing Site 44

5. Acknowledgements . 45
6. IANA Considerations . 45
7. Security Considerations 46
8. Normative References . 46
9. Informative References 47
Appendix A. Document History 51
Authors' Addresses . 56

1. Introduction

Since its publication in [RFC6749] and [RFC6750], OAuth 2.0 ("OAuth"
in the following) has gotten massive traction in the market and
became the standard for API protection and the basis for federated
login using OpenID Connect [OpenID.Core]. While OAuth is used in a
variety of scenarios and different kinds of deployments, the
following challenges can be observed:

* OAuth implementations are being attacked through known
implementation weaknesses and anti-patterns. Although most of
these threats are discussed in the OAuth 2.0 Threat Model and
Security Considerations [RFC6819], continued exploitation
demonstrates a need for more specific recommendations, easier to
implement mitigations, and more defense in depth.

* OAuth is being used in environments with higher security
requirements than considered initially, such as Open Banking,
eHealth, eGovernment, and Electronic Signatures. Those use cases
call for stricter guidelines and additional protection.

Lodderstedt, et al. Expires 31 March 2023 [Page 3]

Draft: OAuth 2.0 Security Best Current Practice 267

Internet-Draft oauth-security-topics September 2022

* OAuth is being used in much more dynamic setups than originally
anticipated, creating new challenges with respect to security.
Those challenges go beyond the original scope of [RFC6749],
[RFC6750], and [RFC6819].

OAuth initially assumed static relationships between client,
authorization server, and resource servers. The URLs of the AS
and RS were known to the client at deployment time and built an
anchor for the trust relationships among those parties. The
validation of whether the client talks to a legitimate server was
based on TLS server authentication (see [RFC6819], Section 4.5.4).
With the increasing adoption of OAuth, this simple model dissolved
and, in several scenarios, was replaced by a dynamic establishment
of the relationship between clients on one side and the
authorization and resource servers of a particular deployment on
the other side. This way, the same client could be used to access
services of different providers (in case of standard APIs, such as
e-mail or OpenID Connect) or serve as a front end to a particular
tenant in a multi-tenant environment. Extensions of OAuth, such
as the OAuth 2.0 Dynamic Client Registration Protocol [RFC7591]
and OAuth 2.0 Authorization Server Metadata [RFC8414] were
developed to support the use of OAuth in dynamic scenarios.

* Technology has changed. For example, the way browsers treat
fragments when redirecting requests has changed, and with it, the
implicit grant's underlying security model.

This document provides updated security recommendations to address
these challenges. It does not supplant the security advice given in
[RFC6749], [RFC6750], and [RFC6819], but complements those documents.

This document introduces new requirements beyond those defined in
existing specifications such as OAuth 2.0 [RFC6749] and OpenID
Connect [OpenID.Core] and deprecates some modes of operation that are
deemed less secure or even insecure. Naturally, not all existing
ecosystems and implementations are compatible with the new
requirements and following the best practices described in this
document may break interoperability. Nonetheless, it is RECOMMENDED
that implementers upgrade their implementations and ecosystems when
feasible.

Lodderstedt, et al. Expires 31 March 2023 [Page 4]

268 Draft: OAuth 2.0 Security Best Current Practice

Internet-Draft oauth-security-topics September 2022

1.1. Structure

The remainder of this document is organized as follows: The next
section summarizes the most important best practices for every OAuth
implementor. Afterwards, the updated the OAuth attacker model is
presented. Subsequently, a detailed analysis of the threats and
implementation issues that can be found in the wild today is given
along with a discussion of potential countermeasures.

1.2. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

This specification uses the terms "access token", "authorization
endpoint", "authorization grant", "authorization server", "client",
"client identifier" (client ID), "protected resource", "refresh
token", "resource owner", "resource server", and "token endpoint"
defined by OAuth 2.0 [RFC6749].

2. Best Practices

This section describes the set of security mechanisms and measures
the OAuth working group considers best practices at the time of
writing.

2.1. Protecting Redirect-Based Flows

When comparing client redirect URIs against pre-registered URIs,
authorization servers MUST utilize exact string matching except for
port numbers in localhost redirection URIs of native apps, see
Section 4.1.3. This measure contributes to the prevention of leakage
of authorization codes and access tokens (see Section 4.1). It can
also help to detect mix-up attacks (see Section 4.4).

Clients and AS MUST NOT expose URLs that forward the user's browser
to arbitrary URIs obtained from a query parameter ("open
redirector"). Open redirectors can enable exfiltration of
authorization codes and access tokens, see Section 4.10.1.

Clients MUST prevent Cross-Site Request Forgery (CSRF). In this
context, CSRF refers to requests to the redirection endpoint that do
not originate at the authorization server, but a malicious third
party (see Section 4.4.1.8. of [RFC6819] for details). Clients that
have ensured that the authorization server supports PKCE [RFC7636]

Lodderstedt, et al. Expires 31 March 2023 [Page 5]

Draft: OAuth 2.0 Security Best Current Practice 269

Internet-Draft oauth-security-topics September 2022

MAY rely on the CSRF protection provided by PKCE. In OpenID Connect
flows, the nonce parameter provides CSRF protection. Otherwise, one-
time use CSRF tokens carried in the state parameter that are securely
bound to the user agent MUST be used for CSRF protection (see
Section 4.7.1).

When an OAuth client can interact with more than one authorization
server, a defense against mix-up attacks (see Section 4.4) is
REQUIRED. To this end, clients SHOULD

* use the iss parameter as a countermeasure according to [RFC9207],
or

* use an alternative countermeasure based on an iss value in the
authorization response (such as the iss Claim in the ID Token in
[OpenID.Core] or in [JARM] responses), processing it as described
in [RFC9207].

In the absence of these options, clients MAY instead use distinct
redirect URIs to identify authorization endpoints and token
endpoints, as described in Section 4.4.2.

An AS that redirects a request potentially containing user
credentials MUST avoid forwarding these user credentials accidentally
(see Section 4.11 for details).

2.1.1. Authorization Code Grant

Clients MUST prevent authorization code injection attacks (see
Section 4.5) and misuse of authorization codes using one of the
following options:

* Public clients MUST use PKCE [RFC7636] to this end, as motivated
in Section 4.5.3.1.

* For confidential clients, the use of PKCE [RFC7636] is
RECOMMENDED, as it provides a strong protection against misuse and
injection of authorization codes as described in Section 4.5.3.1
and, as a side-effect, prevents CSRF even in presence of strong
attackers as described in Section 4.7.1.

* With additional precautions, described in Section 4.5.3.2,
confidential OpenID Connect [OpenID.Core] clients MAY use the
nonce parameter and the respective Claim in the ID Token instead.

In any case, the PKCE challenge or OpenID Connect nonce MUST be
transaction-specific and securely bound to the client and the user
agent in which the transaction was started.

Lodderstedt, et al. Expires 31 March 2023 [Page 6]

270 Draft: OAuth 2.0 Security Best Current Practice

Internet-Draft oauth-security-topics September 2022

Note: Although PKCE was designed as a mechanism to protect native
apps, this advice applies to all kinds of OAuth clients, including
web applications.

When using PKCE, clients SHOULD use PKCE code challenge methods that
do not expose the PKCE verifier in the authorization request.
Otherwise, attackers that can read the authorization request (cf.
Attacker A4 in Section 3) can break the security provided by PKCE.
Currently, S256 is the only such method.

Authorization servers MUST support PKCE [RFC7636].

If a client sends a valid PKCE [RFC7636] code_challenge parameter in
the authorization request, the authorization server MUST enforce the
correct usage of code_verifier at the token endpoint.

Authorization servers MUST mitigate PKCE Downgrade Attacks by
ensuring that a token request containing a code_verifier parameter is
accepted only if a code_challenge parameter was present in the
authorization request, see Section 4.8.2 for details.

Authorization servers MUST provide a way to detect their support for
PKCE. It is RECOMMENDED for AS to publish the element
code_challenge_methods_supported in their AS metadata ([RFC8414])
containing the supported PKCE challenge methods (which can be used by
the client to detect PKCE support). ASs MAY instead provide a
deployment-specific way to ensure or determine PKCE support by the
AS.

2.1.2. Implicit Grant

The implicit grant (response type "token") and other response types
causing the authorization server to issue access tokens in the
authorization response are vulnerable to access token leakage and
access token replay as described in Section 4.1, Section 4.2,
Section 4.3, and Section 4.6.

Moreover, no viable method for sender-constraining exists to bind
access tokens to a specific client (as recommended in Section 2.2)
when the access tokens are issued in the authorization response.
This means that an attacker can use leaked or stolen access token at
a resource endpoint.

In order to avoid these issues, clients SHOULD NOT use the implicit
grant (response type "token") or other response types issuing access
tokens in the authorization response, unless access token injection
in the authorization response is prevented and the aforementioned
token leakage vectors are mitigated.

Lodderstedt, et al. Expires 31 March 2023 [Page 7]

Draft: OAuth 2.0 Security Best Current Practice 271

Internet-Draft oauth-security-topics September 2022

Clients SHOULD instead use the response type "code" (aka
authorization code grant type) as specified in Section 2.1.1 or any
other response type that causes the authorization server to issue
access tokens in the token response, such as the "code id_token"
response type. This allows the authorization server to detect replay
attempts by attackers and generally reduces the attack surface since
access tokens are not exposed in URLs. It also allows the
authorization server to sender-constrain the issued tokens (see next
section).

2.2. Token Replay Prevention

2.2.1. Access Tokens

A sender-constrained access token scopes the applicability of an
access token to a certain sender. This sender is obliged to
demonstrate knowledge of a certain secret as prerequisite for the
acceptance of that token at the recipient (e.g., a resource server).

Authorization and resource servers SHOULD use mechanisms for sender-
constraining access tokens, such as Mutual TLS for OAuth 2.0
[RFC8705] or OAuth Demonstration of Proof of Possession (DPoP)
[I-D.ietf-oauth-dpop] (see Section 4.9.1.1.2), to prevent misuse of
stolen and leaked access tokens.

2.2.2. Refresh Tokens

Refresh tokens for public clients MUST be sender-constrained or use
refresh token rotation as described in Section 4.13. [RFC6749]
already mandates that refresh tokens for confidential clients can
only be used by the client for which they were issued.

2.3. Access Token Privilege Restriction

The privileges associated with an access token SHOULD be restricted
to the minimum required for the particular application or use case.
This prevents clients from exceeding the privileges authorized by the
resource owner. It also prevents users from exceeding their
privileges authorized by the respective security policy. Privilege
restrictions also help to reduce the impact of access token leakage.

In particular, access tokens SHOULD be restricted to certain resource
servers (audience restriction), preferably to a single resource
server. To put this into effect, the authorization server associates
the access token with certain resource servers and every resource
server is obliged to verify, for every request, whether the access
token sent with that request was meant to be used for that particular
resource server. If not, the resource server MUST refuse to serve

Lodderstedt, et al. Expires 31 March 2023 [Page 8]

272 Draft: OAuth 2.0 Security Best Current Practice

Internet-Draft oauth-security-topics September 2022

the respective request. The aud claim as defined in [RFC9068] MAY be
used to audience-restrict access tokens. Clients and authorization
servers MAY utilize the parameters scope or resource as specified in
[RFC6749] and [RFC8707], respectively, to determine the resource
server they want to access.

Additionally, access tokens SHOULD be restricted to certain resources
and actions on resource servers or resources. To put this into
effect, the authorization server associates the access token with the
respective resource and actions and every resource server is obliged
to verify, for every request, whether the access token sent with that
request was meant to be used for that particular action on the
particular resource. If not, the resource server must refuse to
serve the respective request. Clients and authorization servers MAY
utilize the parameter scope as specified in [RFC6749] and
authorization_details as specified in [I-D.ietf-oauth-rar] to
determine those resources and/or actions.

2.4. Resource Owner Password Credentials Grant

The resource owner password credentials grant MUST NOT be used. This
grant type insecurely exposes the credentials of the resource owner
to the client. Even if the client is benign, this results in an
increased attack surface (credentials can leak in more places than
just the AS) and users are trained to enter their credentials in
places other than the AS.

Furthermore, adapting the resource owner password credentials grant
to two-factor authentication, authentication with cryptographic
credentials (cf. WebCrypto [WebCrypto], WebAuthn [WebAuthn]), and
authentication processes that require multiple steps can be hard or
impossible.

2.5. Client Authentication

Authorization servers SHOULD use client authentication if possible.

It is RECOMMENDED to use asymmetric (public-key based) methods for
client authentication such as mTLS [RFC8705] or private_key_jwt
[OpenID.Core]. When asymmetric methods for client authentication are
used, authorization servers do not need to store sensitive symmetric
keys, making these methods more robust against a number of attacks.

2.6. Other Recommendations

The use of OAuth Metadata [RFC8414] can help to improve the security
of OAuth deployments:

Lodderstedt, et al. Expires 31 March 2023 [Page 9]

Draft: OAuth 2.0 Security Best Current Practice 273

Internet-Draft oauth-security-topics September 2022

* It ensures that security features and other new OAuth features can
be enabled automatically by compliant software libraries.

* It reduces chances for misconfigurations, for example
misconfigured endpoint URLs (that might belong to an attacker) or
misconfigured security features.

* It can help to facilitate rotation of cryptographic keys and to
ensure cryptographic agility.

It is therefore RECOMMENDED that ASs publish OAuth metadata according
to [RFC8414] and that clients make use of this metadata to configure
themselves when available.

Authorization servers SHOULD NOT allow clients to influence their
client_id or any other Claim if that can cause confusion with a
genuine resource owner, as described in Section 4.14

It is RECOMMENDED to use end-to-end TLS. If TLS traffic needs to be
terminated at an intermediary, refer to Section 4.12 for further
security advice.

Authorization responses MUST NOT be transmitted over unencrypted
network connections. To this end, AS MUST NOT allow redirect URIs
that use the http scheme except for native clients that use Loopback
Interface Redirection as described in [RFC8252], Section 7.3.

Authorization servers MUST take precautions to prevent phishing
attacks via redirection as described in Section 4.16.

3. The Updated OAuth 2.0 Attacker Model

In [RFC6819], an attacker model is laid out that describes the
capabilities of attackers against which OAuth deployments must be
protected. In the following, this attacker model is updated to
account for the potentially dynamic relationships involving multiple
parties (as described in Section 1), to include new types of
attackers and to define the attacker model more clearly.

OAuth MUST ensure that the authorization of the resource owner (RO)
(with a user agent) at the authorization server (AS) and the
subsequent usage of the access token at the resource server (RS) is
protected at least against the following attackers:

Lodderstedt, et al. Expires 31 March 2023 [Page 10]

274 Draft: OAuth 2.0 Security Best Current Practice

Internet-Draft oauth-security-topics September 2022

* (A1) Web Attackers that can set up and operate an arbitrary number
of network endpoints including browsers and servers (except for
the concrete RO, AS, and RS). Web attackers may set up web sites
that are visited by the RO, operate their own user agents, and
participate in the protocol.

Web attackers may, in particular, operate OAuth clients that are
registered at AS, and operate their own authorization and resource
servers that can be used (in parallel) by the RO and other
resource owners.

It must also be assumed that web attackers can lure the user to
open arbitrary attacker-chosen URIs at any time. In practice,
this can be achieved in many ways, for example, by injecting
malicious advertisements into advertisement networks, or by
sending legitimate-looking emails.

Web attackers can use their own user credentials to create new
messages as well as any secrets they learned previously. For
example, if a web attacker learns an authorization code of a user
through a misconfigured redirect URI, the web attacker can then
try to redeem that code for an access token.

They cannot, however, read or manipulate messages that are not
targeted towards them (e.g., sent to a URL controlled by a non-
attacker controlled AS).

* (A2) Network Attackers that additionally have full control over
the network over which protocol participants communicate. They
can eavesdrop on, manipulate, and spoof messages, except when
these are properly protected by cryptographic methods (e.g., TLS).
Network attackers can also block arbitrary messages.

While an example for a web attacker would be a customer of an
internet service provider, network attackers could be the internet
service provider itself, an attacker in a public (wifi) network using
ARP spoofing, or a state-sponsored attacker with access to internet
exchange points, for instance.

These attackers conform to the attacker model that was used in formal
analysis efforts for OAuth [arXiv.1601.01229]. This is a minimal
attacker model. Implementers MUST take into account all possible
types of attackers in the environment in which their OAuth
implementations are expected to run. Previous attacks on OAuth have
shown that OAuth deployments SHOULD in particular consider the
following, stronger attackers in addition to those listed above:

Lodderstedt, et al. Expires 31 March 2023 [Page 11]

Draft: OAuth 2.0 Security Best Current Practice 275

Internet-Draft oauth-security-topics September 2022

* (A3) Attackers that can read, but not modify, the contents of the
authorization response (i.e., the authorization response can leak
to an attacker).

Examples for such attacks include open redirector attacks,
insufficient checking of redirect URIs (see Section 4.1), problems
existing on mobile operating systems (where different apps can
register themselves on the same URI), mix-up attacks (see
Section 4.4), where the client is tricked into sending credentials
to a attacker-controlled AS, and the fact that URLs are often
stored/logged by browsers (history), proxy servers, and operating
systems.

* (A4) Attackers that can read, but not modify, the contents of the
authorization request (i.e., the authorization request can leak,
in the same manner as above, to an attacker).

* (A5) Attackers that can acquire an access token issued by AS. For
example, a resource server can be compromised by an attacker, an
access token may be sent to an attacker-controlled resource server
due to a misconfiguration, or an RO is social-engineered into
using a attacker-controlled RS. See also Section 4.9.2.

(A3), (A4) and (A5) typically occur together with either (A1) or
(A2). Attackers can collaborate to reach a common goal.

Note that in this attacker model, an attacker (see A1) can be a RO or
act as one. For example, an attacker can use his own browser to
replay tokens or authorization codes obtained by any of the attacks
described above at the client or RS.

This document focusses on threats resulting from these attackers.
Attacks in an even stronger attacker model are discussed, for
example, in [arXiv.1901.11520].

4. Attacks and Mitigations

This section gives a detailed description of attacks on OAuth
implementations, along with potential countermeasures. Attacks and
mitigations already covered in [RFC6819] are not listed here, except
where new recommendations are made.

Lodderstedt, et al. Expires 31 March 2023 [Page 12]

276 Draft: OAuth 2.0 Security Best Current Practice

Internet-Draft oauth-security-topics September 2022

4.1. Insufficient Redirect URI Validation

Some authorization servers allow clients to register redirect URI
patterns instead of complete redirect URIs. The authorization
servers then match the redirect URI parameter value at the
authorization endpoint against the registered patterns at runtime.
This approach allows clients to encode transaction state into
additional redirect URI parameters or to register a single pattern
for multiple redirect URIs.

This approach turned out to be more complex to implement and more
error prone to manage than exact redirect URI matching. Several
successful attacks exploiting flaws in the pattern matching
implementation or concrete configurations have been observed in the
wild . Insufficient validation of the redirect URI effectively breaks
client identification or authentication (depending on grant and
client type) and allows the attacker to obtain an authorization code
or access token, either

* by directly sending the user agent to a URI under the attackers
control, or

* by exposing the OAuth credentials to an attacker by utilizing an
open redirector at the client in conjunction with the way user
agents handle URL fragments.

These attacks are shown in detail in the following subsections.

4.1.1. Redirect URI Validation Attacks on Authorization Code Grant

For a client using the grant type code, an attack may work as
follows:

Assume the redirect URL pattern https://*.somesite.example/* is
registered for the client with the client ID s6BhdRkqt3. The
intention is to allow any subdomain of somesite.example to be a valid
redirect URI for the client, for example
https://app1.somesite.example/redirect. A naive implementation on
the authorization server, however, might interpret the wildcard * as
"any character" and not "any character valid for a domain name". The
authorization server, therefore, might permit
https://attacker.example/.somesite.example as a redirect URI,
although attacker.example is a different domain potentially
controlled by a malicious party.

The attack can then be conducted as follows:

Lodderstedt, et al. Expires 31 March 2023 [Page 13]

Draft: OAuth 2.0 Security Best Current Practice 277

Internet-Draft oauth-security-topics September 2022

First, the attacker needs to trick the user into opening a tampered
URL in his browser that launches a page under the attacker's control,
say https://www.evil.example (see Attacker A1 in Section 3).

This URL initiates the following authorization request with the
client ID of a legitimate client to the authorization endpoint (line
breaks for display only):

GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=9ad67f13
&redirect_uri=https%3A%2F%2Fattacker.example%2F.somesite.example
HTTP/1.1

Host: server.somesite.example

The authorization server validates the redirect URI and compares it
to the registered redirect URL patterns for the client s6BhdRkqt3.
The authorization request is processed and presented to the user.

If the user does not see the redirect URI or does not recognize the
attack, the code is issued and immediately sent to the attacker's
domain. If an automatic approval of the authorization is enabled
(which is not recommended for public clients according to [RFC6749]),
the attack can be performed even without user interaction.

If the attacker impersonated a public client, the attacker can
exchange the code for tokens at the respective token endpoint.

This attack will not work as easily for confidential clients, since
the code exchange requires authentication with the legitimate
client's secret. The attacker can, however, use the legitimate
confidential client to redeem the code by performing an authorization
code injection attack, see Section 4.5.

Note: Vulnerabilities of this kind can also exist if the
authorization server handles wildcards properly. For example, assume
that the client registers the redirect URL pattern
https://*.somesite.example/* and the authorization server interprets
this as "allow redirect URIs pointing to any host residing in the
domain somesite.example". If an attacker manages to establish a host
or subdomain in somesite.example, he can impersonate the legitimate
client. This could be caused, for example, by a subdomain takeover
attack [subdomaintakeover], where an outdated CNAME record (say,
external-service.somesite.example) points to an external DNS name
that does no longer exist (say, customer-abc.service.example) and can
be taken over by an attacker (e.g., by registering as customer-abc
with the external service).

Lodderstedt, et al. Expires 31 March 2023 [Page 14]

278 Draft: OAuth 2.0 Security Best Current Practice

Internet-Draft oauth-security-topics September 2022

4.1.2. Redirect URI Validation Attacks on Implicit Grant

The attack described above works for the implicit grant as well. If
the attacker is able to send the authorization response to a URI
under his control, he will directly get access to the fragment
carrying the access token.

Additionally, implicit clients can be subject to a further kind of
attack. It utilizes the fact that user agents re-attach fragments to
the destination URL of a redirect if the location header does not
contain a fragment (see [RFC7231], Section 9.5). The attack
described here combines this behavior with the client as an open
redirector (see Section 4.10.1) in order to get access to access
tokens. This allows circumvention even of very narrow redirect URI
patterns, but not strict URL matching.

Assume the registered URL pattern for client s6BhdRkqt3 is
https://client.somesite.example/cb?*, i.e., any parameter is allowed
for redirects to https://client.somesite.example/cb. Unfortunately,
the client exposes an open redirector. This endpoint supports a
parameter redirect_to which takes a target URL and will send the
browser to this URL using an HTTP Location header redirect 303.

The attack can now be conducted as follows:

First, and as above, the attacker needs to trick the user into
opening a tampered URL in his browser that launches a page under the
attacker's control, say https://www.evil.example.

Afterwards, the website initiates an authorization request that is
very similar to the one in the attack on the code flow. Different to
above, it utilizes the open redirector by encoding
redirect_to=https://attacker.example into the parameters of the
redirect URI and it uses the response type "token" (line breaks for
display only):

GET /authorize?response_type=token&state=9ad67f13
&client_id=s6BhdRkqt3
&redirect_uri=https%3A%2F%2Fclient.somesite.example
%2Fcb%26redirect_to%253Dhttps%253A%252F
%252Fattacker.example%252F HTTP/1.1

Host: server.somesite.example

Now, since the redirect URI matches the registered pattern, the
authorization server permits the request and sends the resulting
access token in a 303 redirect (some response parameters omitted for
readability):

Lodderstedt, et al. Expires 31 March 2023 [Page 15]

Draft: OAuth 2.0 Security Best Current Practice 279

Internet-Draft oauth-security-topics September 2022

HTTP/1.1 303 See Other
Location: https://client.somesite.example/cb?

redirect_to%3Dhttps%3A%2F%2Fattacker.example%2Fcb
#access_token=2YotnFZFEjr1zCsicMWpAA&...

At example.com, the request arrives at the open redirector. The
endpoint will read the redirect parameter and will issue an HTTP 303
Location header redirect to the URL https://attacker.example/.

HTTP/1.1 303 See Other
Location: https://attacker.example/

Since the redirector at client.somesite.example does not include a
fragment in the Location header, the user agent will re-attach the
original fragment #access_token=2YotnFZFEjr1zCsicMWpAA&... to the
URL and will navigate to the following URL:

https://attacker.example/#access_token=2YotnFZFEjr1z...

The attacker's page at attacker.example can now access the fragment
and obtain the access token.

4.1.3. Countermeasures

The complexity of implementing and managing pattern matching
correctly obviously causes security issues. This document therefore
advises to simplify the required logic and configuration by using
exact redirect URI matching. This means the authorization server
MUST compare the two URIs using simple string comparison as defined
in [RFC3986], Section 6.2.1. The only exception are native apps
using a localhost URI: In this case, the AS MUST allow variable port
numbers as described in [RFC8252], Section 7.3.

Additional recommendations:

* Servers on which callbacks are hosted MUST NOT expose open
redirectors (see Section 4.10).

* Browsers reattach URL fragments to Location redirection URLs only
if the URL in the Location header does not already contain a
fragment. Therefore, servers MAY prevent browsers from
reattaching fragments to redirection URLs by attaching an
arbitrary fragment identifier, for example #_, to URLs in Location
headers.

* Clients SHOULD use the authorization code response type instead of
response types causing access token issuance at the authorization
endpoint. This offers countermeasures against reuse of leaked

Lodderstedt, et al. Expires 31 March 2023 [Page 16]

280 Draft: OAuth 2.0 Security Best Current Practice

Internet-Draft oauth-security-topics September 2022

credentials through the exchange process with the authorization
server and token replay through sender-constraining of the access
tokens.

If the origin and integrity of the authorization request containing
the redirect URI can be verified, for example when using [RFC9101] or
[RFC9126] with client authentication, the authorization server MAY
trust the redirect URI without further checks.

4.2. Credential Leakage via Referer Headers

The contents of the authorization request URI or the authorization
response URI can unintentionally be disclosed to attackers through
the Referer HTTP header (see [RFC7231], Section 5.5.2), by leaking
either from the AS's or the client's web site, respectively. Most
importantly, authorization codes or state values can be disclosed in
this way. Although specified otherwise in [RFC7231], Section 5.5.2,
the same may happen to access tokens conveyed in URI fragments due to
browser implementation issues, as illustrated by Chromium Issue
168213 [bug.chromium].

4.2.1. Leakage from the OAuth Client

Leakage from the OAuth client requires that the client, as a result
of a successful authorization request, renders a page that

* contains links to other pages under the attacker's control and a
user clicks on such a link, or

* includes third-party content (advertisements in iframes, images,
etc.), for example if the page contains user-generated content
(blog).

As soon as the browser navigates to the attacker's page or loads the
third-party content, the attacker receives the authorization response
URL and can extract code or state (and potentially access token).

4.2.2. Leakage from the Authorization Server

In a similar way, an attacker can learn state from the authorization
request if the authorization endpoint at the authorization server
contains links or third-party content as above.

Lodderstedt, et al. Expires 31 March 2023 [Page 17]

Draft: OAuth 2.0 Security Best Current Practice 281

Internet-Draft oauth-security-topics September 2022

4.2.3. Consequences

An attacker that learns a valid code or access token through a
Referer header can perform the attacks as described in Section 4.1.1,
Section 4.5, and Section 4.6. If the attacker learns state, the CSRF
protection achieved by using state is lost, resulting in CSRF attacks
as described in [RFC6819], Section 4.4.1.8.

4.2.4. Countermeasures

The page rendered as a result of the OAuth authorization response and
the authorization endpoint SHOULD NOT include third-party resources
or links to external sites.

The following measures further reduce the chances of a successful
attack:

* Suppress the Referer header by applying an appropriate Referrer
Policy [webappsec-referrer-policy] to the document (either as part
of the "referrer" meta attribute or by setting a Referrer-Policy
header). For example, the header Referrer-Policy: no-referrer in
the response completely suppresses the Referer header in all
requests originating from the resulting document.

* Use authorization code instead of response types causing access
token issuance from the authorization endpoint.

* Bind the authorization code to a confidential client or PKCE
challenge. In this case, the attacker lacks the secret to request
the code exchange.

* As described in [RFC6749], Section 4.1.2, authorization codes MUST
be invalidated by the AS after their first use at the token
endpoint. For example, if an AS invalidated the code after the
legitimate client redeemed it, the attacker would fail exchanging
this code later.

This does not mitigate the attack if the attacker manages to
exchange the code for a token before the legitimate client does
so. Therefore, [RFC6749] further recommends that, when an attempt
is made to redeem a code twice, the AS SHOULD revoke all tokens
issued previously based on that code.

* The state value SHOULD be invalidated by the client after its
first use at the redirection endpoint. If this is implemented,
and an attacker receives a token through the Referer header from
the client's web site, the state was already used, invalidated by
the client and cannot be used again by the attacker. (This does

Lodderstedt, et al. Expires 31 March 2023 [Page 18]

282 Draft: OAuth 2.0 Security Best Current Practice

Internet-Draft oauth-security-topics September 2022

not help if the state leaks from the AS's web site, since then the
state has not been used at the redirection endpoint at the client
yet.)

* Use the form post response mode instead of a redirect for the
authorization response (see [OAuth.Post]).

4.3. Credential Leakage via Browser History

Authorization codes and access tokens can end up in the browser's
history of visited URLs, enabling the attacks described in the
following.

4.3.1. Authorization Code in Browser History

When a browser navigates to client.example/
redirection_endpoint?code=abcd as a result of a redirect from a
provider's authorization endpoint, the URL including the
authorization code may end up in the browser's history. An attacker
with access to the device could obtain the code and try to replay it.

Countermeasures:

* Authorization code replay prevention as described in [RFC6819],
Section 4.4.1.1, and Section 4.5.

* Use form post response mode instead of redirect for the
authorization response (see [OAuth.Post]).

4.3.2. Access Token in Browser History

An access token may end up in the browser history if a client or a
web site that already has a token deliberately navigates to a page
like provider.com/get_user_profile?access_token=abcdef. [RFC6750]
discourages this practice and advises to transfer tokens via a
header, but in practice web sites often pass access tokens in query
parameters.

In case of the implicit grant, a URL like client.example/
redirection_endpoint#access_token=abcdef may also end up in the
browser history as a result of a redirect from a provider's
authorization endpoint.

Countermeasures:

Lodderstedt, et al. Expires 31 March 2023 [Page 19]

Draft: OAuth 2.0 Security Best Current Practice 283

Internet-Draft oauth-security-topics September 2022

* Clients MUST NOT pass access tokens in a URI query parameter in
the way described in Section 2.3 of [RFC6750]. The authorization
code grant or alternative OAuth response modes like the form post
response mode [OAuth.Post] can be used to this end.

4.4. Mix-Up Attacks

Mix-up is an attack on scenarios where an OAuth client interacts with
two or more authorization servers and at least one authorization
server is under the control of the attacker. This can be the case,
for example, if the attacker uses dynamic registration to register
the client at his own authorization server or if an authorization
server becomes compromised.

The goal of the attack is to obtain an authorization code or an
access token for an uncompromised authorization server. This is
achieved by tricking the client into sending those credentials to the
compromised authorization server (the attacker) instead of using them
at the respective endpoint of the uncompromised authorization/
resource server.

4.4.1. Attack Description

The description here follows [arXiv.1601.01229], with variants of the
attack outlined below.

Preconditions: For this variant of the attack to work, we assume that

* the implicit or authorization code grant are used with multiple AS
of which one is considered "honest" (H-AS) and one is operated by
the attacker (A-AS), and

* the client stores the AS chosen by the user in a session bound to
the user's browser and uses the same redirection endpoint URI for
each AS.

In the following, we assume that the client is registered with H-AS
(URI: https://honest.as.example, client ID: 7ZGZldHQ) and with A-AS
(URI: https://attacker.example, client ID: 666RVZJTA). URLs shown in
the following example are shortened for presentation to only include
parameters relevant for the attack.

Attack on the authorization code grant:

1. The user selects to start the grant using A-AS (e.g., by clicking
on a button at the client's website).

Lodderstedt, et al. Expires 31 March 2023 [Page 20]

284 Draft: OAuth 2.0 Security Best Current Practice

Internet-Draft oauth-security-topics September 2022

2. The client stores in the user's session that the user selected
"A-AS" and redirects the user to A-AS's authorization endpoint
with a Location header containing the URL
https://attacker.example/
authorize?response_type=code&client_id=666RVZJTA.

3. When the user's browser navigates to the attacker's authorization
endpoint, the attacker immediately redirects the browser to the
authorization endpoint of H-AS. In the authorization request,
the attacker replaces the client ID of the client at A-AS with
the client's ID at H-AS. Therefore, the browser receives a
redirection (303 See Other) with a Location header pointing to
https://honest.as.example/
authorize?response_type=code&client_id=7ZGZldHQ

4. The user authorizes the client to access her resources at H-AS.
(Note that a vigilant user might at this point detect that she
intended to use A-AS instead of H-AS. The first attack variant
listed below avoids this.) H-AS issues a code and sends it (via
the browser) back to the client.

5. Since the client still assumes that the code was issued by A-AS,
it will try to redeem the code at A-AS's token endpoint.

6. The attacker therefore obtains code and can either exchange the
code for an access token (for public clients) or perform an
authorization code injection attack as described in Section 4.5.

Variants:

* *Mix-Up With Interception*: This variant works only if the
attacker can intercept and manipulate the first request/response
pair from a user's browser to the client (in which the user
selects a certain AS and is then redirected by the client to that
AS), as in Attacker A2 (see Section 3). This capability can, for
example, be the result of a man-in-the-middle attack on the user's
connection to the client. In the attack, the user starts the flow
with H-AS. The attacker intercepts this request and changes the
user's selection to A-AS. The rest of the attack proceeds as in
Steps 2 and following above.

* *Implicit Grant*: In the implicit grant, the attacker receives an
access token instead of the code; the rest of the attack works as
above.

* *Per-AS Redirect URIs*: If clients use different redirect URIs for
different ASs, do not store the selected AS in the user's session,
and ASs do not check the redirect URIs properly, attackers can

Lodderstedt, et al. Expires 31 March 2023 [Page 21]

Draft: OAuth 2.0 Security Best Current Practice 285

Internet-Draft oauth-security-topics September 2022

mount an attack called "Cross-Social Network Request Forgery".
These attacks have been observed in practice. Refer to
[oauth_security_jcs_14] for details.

* *OpenID Connect*: There are variants that can be used to attack
OpenID Connect. In these attacks, the attacker misuses features
of the OpenID Connect Discovery [OpenID.Discovery] mechanism or
replays access tokens or ID Tokens to conduct a mix-up attack.
The attacks are described in detail in [arXiv.1704.08539],
Appendix A, and [arXiv.1508.04324v2], Section 6 ("Malicious
Endpoints Attacks").

4.4.2. Countermeasures

When an OAuth client can only interact with one authorization server,
a mix-up defense is not required. In scenarios where an OAuth client
interacts with two or more authorization servers, however, clients
MUST prevent mix-up attacks. Two different methods are discussed in
the following.

For both defenses, clients MUST store, for each authorization
request, the issuer they sent the authorization request to and bind
this information to the user agent. The issuer serves, via the
associated metadata, as an abstract identifier for the combination of
the authorization endpoint and token endpoint that are to be used in
the flow. If an issuer identifier is not available, for example, if
neither OAuth metadata [RFC8414] nor OpenID Connect Discovery
[OpenID.Discovery] are used, a different unique identifier for this
tuple or the tuple itself can be used instead. For brevity of
presentation, such a deployment-specific identifier will be subsumed
under the issuer (or issuer identifier) in the following.

Note: Just storing the authorization server URL is not sufficient to
identify mix-up attacks. An attacker might declare an uncompromised
AS's authorization endpoint URL as "his" AS URL, but declare a token
endpoint under his own control.

4.4.2.1. Mix-Up Defense via Issuer Identification

This defense requires that the authorization server sends his issuer
identifier in the authorization response to the client. When
receiving the authorization response, the client MUST compare the
received issuer identifier to the stored issuer identifier. If there
is a mismatch, the client MUST abort the interaction.

There are different ways this issuer identifier can be transported to
the client:

Lodderstedt, et al. Expires 31 March 2023 [Page 22]

286 Draft: OAuth 2.0 Security Best Current Practice

Internet-Draft oauth-security-topics September 2022

* The issuer information can be transported, for example, via a
separate response parameter iss, defined in [RFC9207].

* When OpenID Connect is used and an ID Token is returned in the
authorization response, the client can evaluate the iss Claim in
the ID Token.

In both cases, the iss value MUST be evaluated according to
[RFC9207].

While this defense may require deploying new OAuth features to
transport the issuer information, it is a robust and relatively
simple defense against mix-up.

4.4.2.2. Mix-Up Defense via Distinct Redirect URIs

For this defense, clients MUST use a distinct redirect URI for each
issuer they interact with.

Clients MUST check that the authorization response was received from
the correct issuer by comparing the distinct redirect URI for the
issuer to the URI where the authorization response was received on.
If there is a mismatch, the client MUST abort the flow.

While this defense builds upon existing OAuth functionality, it
cannot be used in scenarios where clients only register once for the
use of many different issuers (as in some open banking schemes) and
due to the tight integration with the client registration, it is
harder to deploy automatically.

Furthermore, an attacker might be able to circumvent the protection
offered by this defense by registering a new client with the "honest"
AS using the redirect URI that the client assigned to the attacker's
AS. The attacker could then run the attack as described above,
replacing the client ID with the client ID of his newly created
client.

This defense SHOULD therefore only be used if other options are not
available.

4.5. Authorization Code Injection

An attacker that has gained access to an authorization code contained
in an authorization response (see Attacker A3 in Section 3) can try
to redeem the authorization code for an access token or otherwise
make use of the authorization code.

Lodderstedt, et al. Expires 31 March 2023 [Page 23]

Draft: OAuth 2.0 Security Best Current Practice 287

Internet-Draft oauth-security-topics September 2022

In the case that the authorization code was created for a public
client, the attacker can send the authorization code to the token
endpoint of the authorization server and thereby get an access token.
This attack was described in Section 4.4.1.1 of [RFC6819].

For confidential clients, or in some special situations, the attacker
can execute an authorization code injection attack, as described in
the following.

In an authorization code injection attack, the attacker attempts to
inject a stolen authorization code into the attacker's own session
with the client. The aim is to associate the attacker's session at
the client with the victim's resources or identity, thereby giving
the attacker at least limited access to the victum's resources.

Besides circumventing the client authentication of confidential
clients, other use cases for this attack include:

* The attacker wants to access certain functions in this particular
client. As an example, the attacker wants to impersonate his
victim in a certain app or on a certain web site.

* The authorization or resource servers are limited to certain
networks that the attacker is unable to access directly.

Except in these special cases, authorization code injection is
usually not interesting when the code was created for a public
client, as sending the code to the token endpoint is a simpler and
more powerful attack, as described above.

4.5.1. Attack Description

The authorization code injection attack works as follows:

1. The attacker obtains an authorization code (see attacker A3 in
Section 3). For the rest of the attack, only the capabilities of
a web attacker (A1) are required.

2. From the attacker's own device, the attacker starts a regular
OAuth authorization process with the legitimate client.

3. In the response of the authorization server to the legitimate
client, the attacker replaces the newly created authorization
code with the stolen authorization code. Since this response is
passing through the attacker's device, the attacker can use any
tool that can intercept and manipulate the authorization response
to this end. The attacker does not need to control the network.

Lodderstedt, et al. Expires 31 March 2023 [Page 24]

288 Draft: OAuth 2.0 Security Best Current Practice

Internet-Draft oauth-security-topics September 2022

4. The legitimate client sends the code to the authorization
server's token endpoint, along with the redirect_uri and the
client's client ID and client secret (or other means of client
authentication).

5. The authorization server checks the client secret, whether the
code was issued to the particular client, and whether the actual
redirect URI matches the redirect_uri parameter (see [RFC6749]).

6. All checks succeed and the authorization server issues access and
other tokens to the client. The attacker has now associated his
session with the legitimate client with the victim's resources
and/or identity.

4.5.2. Discussion

Obviously, the check in step (5.) will fail if the code was issued to
another client ID, e.g., a client set up by the attacker. The check
will also fail if the authorization code was already redeemed by the
legitimate user and was one-time use only.

An attempt to inject a code obtained via a manipulated redirect URI
should also be detected if the authorization server stored the
complete redirect URI used in the authorization request and compares
it with the redirect_uri parameter.

[RFC6749], Section 4.1.3, requires the AS to "... ensure that the
redirect_uri parameter is present if the redirect_uri parameter was
included in the initial authorization request as described in
Section 4.1.1, and if included ensure that their values are
identical.". In the attack scenario described above, the legitimate
client would use the correct redirect URI it always uses for
authorization requests. But this URI would not match the tampered
redirect URI used by the attacker (otherwise, the redirect would not
land at the attackers page). So the authorization server would
detect the attack and refuse to exchange the code.

Note: This check could also detect attempts to inject an
authorization code that had been obtained from another instance of
the same client on another device, if certain conditions are
fulfilled:

* the redirect URI itself needs to contain a nonce or another kind
of one-time use, secret data and

* the client has bound this data to this particular instance of the
client.

Lodderstedt, et al. Expires 31 March 2023 [Page 25]

Draft: OAuth 2.0 Security Best Current Practice 289

Internet-Draft oauth-security-topics September 2022

But this approach conflicts with the idea to enforce exact redirect
URI matching at the authorization endpoint. Moreover, it has been
observed that providers very often ignore the redirect_uri check
requirement at this stage, maybe because it doesn't seem to be
security-critical from reading the specification.

Other providers just pattern match the redirect_uri parameter against
the registered redirect URI pattern. This saves the authorization
server from storing the link between the actual redirect URI and the
respective authorization code for every transaction. But this kind
of check obviously does not fulfill the intent of the specification,
since the tampered redirect URI is not considered. So any attempt to
inject an authorization code obtained using the client_id of a
legitimate client or by utilizing the legitimate client on another
device will not be detected in the respective deployments.

It is also assumed that the requirements defined in [RFC6749],
Section 4.1.3, increase client implementation complexity as clients
need to store or re-construct the correct redirect URI for the call
to the token endpoint.

Asymmetric methods for client authentication do not stop this attack,
as the legitimate client authenticates at the token endpoint.

This document therefore recommends to instead bind every
authorization code to a certain client instance on a certain device
(or in a certain user agent) in the context of a certain transaction
using one of the mechanisms described next.

4.5.3. Countermeasures

There are two good technical solutions to achieve this goal, outlined
in the following.

4.5.3.1. PKCE

The PKCE mechanism specified in [RFC7636] can be used as a
countermeasure. When the attacker attempts to inject an
authorization code, the check of the code_verifier fails: the client
uses its correct verifier, but the code is associated with a
code_challenge that does not match this verifier. PKCE is a deployed
OAuth feature, although its originally intended use was solely
focused on securing native apps, not the broader use recommended by
this document.

Lodderstedt, et al. Expires 31 March 2023 [Page 26]

290 Draft: OAuth 2.0 Security Best Current Practice

Internet-Draft oauth-security-topics September 2022

PKCE does not only protect against the autorization code injection
attack, but also protects authorization codes created for public
clients: PKCE ensures that an attacker cannot redeem a stolen
authorization code at the token endpoint of the authorization server
without knowledge of the code_verifier.

4.5.3.2. Nonce

OpenID Connect's existing nonce parameter can protect against
authorization code injection attacks. The nonce value is one-time
use and created by the client. The client is supposed to bind it to
the user agent session and sends it with the initial request to the
OpenID Provider (OP). The OP puts the received nonce value into the
ID Token that is issued as part of the code exchange at the token
endpoint. If an attacker injected an authorization code in the
authorization response, the nonce value in the client session and the
nonce value in the ID token will not match and the attack is
detected. The assumption is that an attacker cannot get hold of the
user agent state on the victim's device, where the attacker has
stolen the respective authorization code.

It is important to note that this countermeasure only works if the
client properly checks the nonce parameter in the ID Token and does
not use any issued token until this check has succeeded. More
precisely, a client protecting itself against code injection using
the nonce parameter,

1. MUST validate the nonce in the ID Token obtained from the token
endpoint, even if another ID Token was obtained from the
authorization response (e.g., response_type=code+id_token), and

2. MUST ensure that, unless and until that check succeeds, all
tokens (ID Tokens and the access token) are disregarded and not
used for any other purpose.

It is important to note that nonce does not protect authorization
codes of public clients, as an attacker does not need to execute an
authorization code injection attack. Instead, an attacker can
directly call the token endpoint with the stolen authorization code.

4.5.3.3. Other Solutions

Other solutions, like binding state to the code, sender-constraining
the code using cryptographic means, or per-instance client
credentials are conceivable, but lack support and bring new security
requirements.

Lodderstedt, et al. Expires 31 March 2023 [Page 27]

Draft: OAuth 2.0 Security Best Current Practice 291

Internet-Draft oauth-security-topics September 2022

PKCE is the most obvious solution for OAuth clients as it is
available today (originally intended for OAuth native apps) whereas
nonce is appropriate for OpenID Connect clients.

4.5.4. Limitations

An attacker can circumvent the countermeasures described above if he
can modify the nonce or code_challenge values that are used in the
victim's authorization request. The attacker can modify these values
to be the same ones as those chosen by the client in his own session
in Step 2 of the attack above. (This requires that the victim's
session with the client begins after the attacker started his session
with the client.) If the attacker is then able to capture the
authorization code from the victim, the attacker will be able to
inject the stolen code in Step 3 even if PKCE or nonce are used.

This attack is complex and requires a close interaction between the
attacker and the victim's session. Nonetheless, measures to prevent
attackers from reading the contents of the authorization response
still need to be taken, as described in Section 4.1, Section 4.2,
Section 4.3, Section 4.4, and Section 4.10.

4.6. Access Token Injection

In an access token injection attack, the attacker attempts to inject
a stolen access token into a legitimate client (that is not under the
attacker's control). This will typically happen if the attacker
wants to utilize a leaked access token to impersonate a user in a
certain client.

To conduct the attack, the attacker starts an OAuth flow with the
client using the implicit grant and modifies the authorization
response by replacing the access token issued by the authorization
server or directly makes up an authorization server response
including the leaked access token. Since the response includes the
state value generated by the client for this particular transaction,
the client does not treat the response as a CSRF attack and uses the
access token injected by the attacker.

4.6.1. Countermeasures

There is no way to detect such an injection attack in pure-OAuth
flows, since the token is issued without any binding to the
transaction or the particular user agent.

In OpenID Connect, the attack can be mitigated, as the authorization
response additionally contains an ID Token containing the at_hash
claim. The attacker therefore needs to replace both the access token

Lodderstedt, et al. Expires 31 March 2023 [Page 28]

292 Draft: OAuth 2.0 Security Best Current Practice

Internet-Draft oauth-security-topics September 2022

as well as the ID Token in the response. The attacker cannot forge
the ID Token, as it is signed or encrypted with authentication. The
attacker also cannot inject a leaked ID Token matching the stolen
access token, as the nonce claim in the leaked ID Token will (with a
very high probability) contain a different value than the one
expected in the authorization response.

Note that further protection, like sender-constrained access tokens,
is still required to prevent attackers from using the access token at
the resource endpoint directly.

The recommendations in Section 2.1.2 follow from this.

4.7. Cross Site Request Forgery

An attacker might attempt to inject a request to the redirect URI of
the legitimate client on the victim's device, e.g., to cause the
client to access resources under the attacker's control. This is a
variant of an attack known as Cross-Site Request Forgery (CSRF).

4.7.1. Countermeasures

The traditional countermeasure is that clients pass a value in the
state parameter that links the request to the redirect URI to the
user agent session as described in detail in [RFC6819],
Section 5.3.5. The same protection is provided by PKCE or the OpenID
Connect nonce value.

When using PKCE instead of state or nonce for CSRF protection, it is
important to note that:

* Clients MUST ensure that the AS supports PKCE before using PKCE
for CSRF protection. If an authorization server does not support
PKCE, state or nonce MUST be used for CSRF protection.

* If state is used for carrying application state, and integrity of
its contents is a concern, clients MUST protect state against
tampering and swapping. This can be achieved by binding the
contents of state to the browser session and/or signed/encrypted
state values as discussed in the now-expired draft
[I-D.bradley-oauth-jwt-encoded-state].

The AS therefore MUST provide a way to detect their support for PKCE.
Using AS metadata according to [RFC8414] is RECOMMENDED, but AS MAY
instead provide a deployment-specific way to ensure or determine PKCE
support.

Lodderstedt, et al. Expires 31 March 2023 [Page 29]

Draft: OAuth 2.0 Security Best Current Practice 293

Internet-Draft oauth-security-topics September 2022

PKCE provides robust protection against CSRF attacks even in presence
of an that can read the authorization response (see Attacker A3 in
Section 3). When state is used or an ID Token is returned in the
authorization response (e.g., response_type=code+id_token), the
attacker either learns the state value and can replay it into the
forged authorization response, or can extract the nonce from the ID
Token and use it in a new request to the authorization server to mint
an ID Token with the same nonce. The new ID Token can then be used
for the CSRF attack.

4.8. PKCE Downgrade Attack

An authorization server that supports PKCE but does not make its use
mandatory for all flows can be susceptible to a PKCE downgrade
attack.

The first prerequisite for this attack is that there is an attacker-
controllable flag in the authorization request that enables or
disables PKCE for the particular flow. The presence or absence of
the code_challenge parameter lends itself for this purpose, i.e., the
AS enables and enforces PKCE if this parameter is present in the
authorization request, but does not enforce PKCE if the parameter is
missing.

The second prerequisite for this attack is that the client is not
using state at all (e.g., because the client relies on PKCE for CSRF
prevention) or that the client is not checking state correctly.

Roughly speaking, this attack is a variant of a CSRF attack. The
attacker achieves the same goal as in the attack described in
Section 4.7: The attacker injects an authorization code (and with
that, an access token) that is bound to the attacker's resources into
a session between his victim and the client.

4.8.1. Attack Description

1. The user has started an OAuth session using some client at an AS.
In the authorization request, the client has set the parameter
code_challenge=sha256(abc) as the PKCE code challenge. The
client is now waiting to receive the authorization response from
the user's browse.

Lodderstedt, et al. Expires 31 March 2023 [Page 30]

294 Draft: OAuth 2.0 Security Best Current Practice

Internet-Draft oauth-security-topics September 2022

2. To conduct the attack, the attacker uses his own device to start
an authorization flow with the targeted client. The client now
uses another PKCE code challenge, say code_challenge=sha256(xyz),
in the authorization request. The attacker intercepts the
request and removes the entire code_challenge parameter from the
request. Since this step is performed on the attacker's device,
the attacker has full access to the request contents, for example
using browser debug tools.

3. If the authorization server allows for flows without PKCE, it
will create a code that is not bound to any PKCE code challenge.

4. The attacker now redirects the user's browser to an authorization
response URL that contains the code for the attacker's session
with the AS.

5. The user's browser sends the authorization code to the client,
which will now try to redeem the code for an access token at the
AS. The client will send code_verifier=abc as the PKCE code
verifier in the token request.

6. Since the authorization server sees that this code is not bound
to any PKCE code challenge, it will not check the presence or
contents of the code_verifier parameter. It will issue an access
token that belongs to the attacker's resource to the client under
the user's control.

4.8.2. Countermeasures

Using state properly would prevent this attack. However, practice
has shown that many OAuth clients do not use or check state properly.

Therefore, ASs MUST take precautions against this threat.

Note that from the view of the AS, in the attack described above, a
code_verifier parameter is received at the token endpoint although no
code_challenge parameter was present in the authorization request for
the OAuth flow in which the authorization code was issued.

This fact can be used to mitigate this attack. [RFC7636] already
mandates that

* an AS that supports PKCE MUST check whether a code challenge is
contained in the authorization request and bind this information
to the code that is issued; and

Lodderstedt, et al. Expires 31 March 2023 [Page 31]

Draft: OAuth 2.0 Security Best Current Practice 295

Internet-Draft oauth-security-topics September 2022

* when a code arrives at the token endpoint, and there was a
code_challenge in the authorization request for which this code
was issued, there must be a valid code_verifier in the token
request.

Beyond this, to prevent PKCE downgrade attacks, the AS MUST ensure
that if there was no code_challenge in the authorization request, a
request to the token endpoint containing a code_verifier is rejected.

Note: ASs that mandate the use of PKCE in general or for particular
clients implicitly implement this security measure.

4.9. Access Token Leakage at the Resource Server

Access tokens can leak from a resource server under certain
circumstances.

4.9.1. Access Token Phishing by Counterfeit Resource Server

An attacker may setup his own resource server and trick a client into
sending access tokens to it that are valid for other resource servers
(see Attackers A1 and A5 in Section 3). If the client sends a valid
access token to this counterfeit resource server, the attacker in
turn may use that token to access other services on behalf of the
resource owner.

This attack assumes the client is not bound to one specific resource
server (and its URL) at development time, but client instances are
provided with the resource server URL at runtime. This kind of late
binding is typical in situations where the client uses a service
implementing a standardized API (e.g., for e-Mail, calendar, health,
or banking) and where the client is configured by a user or
administrator for a service that this user or company uses.

4.9.1.1. Countermeasures

There are several potential mitigation strategies, which will be
discussed in the following sections.

4.9.1.1.1. Metadata

An authorization server could provide the client with additional
information about the locations where it is safe to use its access
tokens.

In the simplest form, this would require the AS to publish a list of
its known resource servers, illustrated in the following example
using a non-standard metadata parameter resource_servers:

Lodderstedt, et al. Expires 31 March 2023 [Page 32]

296 Draft: OAuth 2.0 Security Best Current Practice

Internet-Draft oauth-security-topics September 2022

HTTP/1.1 200 OK
Content-Type: application/json

{
"issuer":"https://server.somesite.example",
"authorization_endpoint":
"https://server.somesite.example/authorize",

"resource_servers":[
"email.somesite.example",
"storage.somesite.example",
"video.somesite.example"

]
...

}

The AS could also return the URL(s) an access token is good for in
the token response, illustrated by the example and non-standard
return parameter access_token_resource_server:

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache

{
"access_token":"2YotnFZFEjr1zCsicMWpAA",
"access_token_resource_server":
"https://hostedresource.somesite.example/path1",

...
}

This mitigation strategy would rely on the client to enforce the
security policy and to only send access tokens to legitimate
destinations. Results of OAuth-related security research (see for
example [oauth_security_ubc] and [oauth_security_cmu]) indicate a
large portion of client implementations do not or fail to properly
implement security controls, like state checks. So relying on
clients to prevent access token phishing is likely to fail as well.
Moreover, given the ratio of clients to authorization and resource
servers, it is considered the more viable approach to move as much as
possible security-related logic to those entities. Clearly, the
client has to contribute to the overall security. But there are
alternative countermeasures, as described in the next sections, that
provide a better balance between the involved parties.

Lodderstedt, et al. Expires 31 March 2023 [Page 33]

Draft: OAuth 2.0 Security Best Current Practice 297

Internet-Draft oauth-security-topics September 2022

4.9.1.1.2. Sender-Constrained Access Tokens

As the name suggests, sender-constrained access tokens scope the
applicability of an access token to a certain sender. This sender is
obliged to demonstrate knowledge of a certain secret as prerequisite
for the acceptance of that token at a resource server.

A typical flow looks like this:

1. The authorization server associates data with the access token
that binds this particular token to a certain client. The
binding can utilize the client identity, but in most cases the AS
utilizes key material (or data derived from the key material)
known to the client.

2. This key material must be distributed somehow. Either the key
material already exists before the AS creates the binding or the
AS creates ephemeral keys. The way pre-existing key material is
distributed varies among the different approaches. For example,
X.509 Certificates can be used, in which case the distribution
happens explicitly during the enrollment process. Or the key
material is created and distributed at the TLS layer, in which
case it might automatically happen during the setup of a TLS
connection.

3. The RS must implement the actual proof of possession check. This
is typically done on the application level, often tied to
specific material provided by transport layer (e.g., TLS). The
RS must also ensure that replay of the proof of possession is not
possible.

Two methods for sender-constrained access tokens using proof-of-
possession have been defined by the OAuth working group:

* *OAuth 2.0 Mutual-TLS Client Authentication and Certificate-Bound
Access Tokens* ([RFC8705]): The approach as specified in this
document allows the use of mutual TLS (mTLS) for both client
authentication and sender-constrained access tokens. For the
purpose of sender-constrained access tokens, the client is
identified towards the resource server by the fingerprint of its
public key. During processing of an access token request, the
authorization server obtains the client's public key from the TLS
stack and associates its fingerprint with the respective access
tokens. The resource server in the same way obtains the public
key from the TLS stack and compares its fingerprint with the
fingerprint associated with the access token.

Lodderstedt, et al. Expires 31 March 2023 [Page 34]

298 Draft: OAuth 2.0 Security Best Current Practice

Internet-Draft oauth-security-topics September 2022

* *DPoP* ([I-D.ietf-oauth-dpop]): DPoP (Demonstration of Proof-of-
Possession at the Application Layer) outlines an application-level
sender-constraining for access and refresh tokens that can be used
in cases where neither mTLS nor OAuth Token Binding (see below)
are available. It uses proof-of-possession based on a public/
private key pair and application-level signing. DPoP can be used
with public clients and, in case of confidential clients, can be
combined with any client authentication method.

For reference, other approaches have been discussed as well but the
relevant drafts are now expired:

* *OAuth Token Binding* ([I-D.ietf-oauth-token-binding]): In this
approach, an access token is, via the token binding ID, bound to
key material representing a long term association between a client
and a certain TLS host. Negotiation of the key material and proof
of possession in the context of a TLS handshake is taken care of
by the TLS stack. The client needs to determine the token binding
ID of the target resource server and pass this data to the access
token request. The authorization server then associates the
access token with this ID. The resource server checks on every
invocation that the token binding ID of the active TLS connection
and the token binding ID of associated with the access token
match. Since all crypto-related functions are covered by the TLS
stack, this approach is very client developer friendly. As a
prerequisite, token binding as described in [RFC8473] (including
federated token bindings) must be supported on all ends (client,
authorization server, resource server).

* *Signed HTTP Requests* ([I-D.ietf-oauth-signed-http-request]):
This approach utilizes [I-D.ietf-oauth-pop-key-distribution] and
represents the elements of the signature in a JSON object. The
signature is built using JWS. The mechanism has built-in support
for signing of HTTP method, query parameters and headers. It also
incorporates a timestamp as basis for replay prevention.

* *JWT Pop Tokens* ([I-D.sakimura-oauth-jpop]): This draft describes
different ways to constrain access token usage, namely TLS or
request signing. Note: Since the authors of this draft
contributed the TLS-related proposal to [RFC8705], this document
only considers the request signing part. For request signing, the
draft utilizes [I-D.ietf-oauth-pop-key-distribution] and
[RFC7800]. The signature data is represented in a JWT and JWS is
used for signing. Replay prevention is provided by building the
signature over a server-provided nonce, client-provided nonce and
a nonce counter.

Lodderstedt, et al. Expires 31 March 2023 [Page 35]

Draft: OAuth 2.0 Security Best Current Practice 299

Internet-Draft oauth-security-topics September 2022

At the time of writing, OAuth Mutual TLS is the most widely
implemented and the only standardized sender-constraining method.

Note that the security of sender-constrained tokens is undermined
when an attacker gets access to the token and the key material. This
is, in particular, the case for corrupted client software and cross-
site scripting attacks (when the client is running in the browser).
If the key material is protected in a hardware or software security
module or only indirectly accessible (like in a TLS stack), sender-
constrained tokens at least protect against a use of the token when
the client is offline, i.e., when the security module or interface is
not available to the attacker. This applies to access tokens as well
as to refresh tokens (see Section 4.13).

4.9.1.1.3. Audience Restricted Access Tokens

Audience restriction essentially restricts access tokens to a
particular resource server. The authorization server associates the
access token with the particular resource server and the resource
server SHOULD verify the intended audience. If the access token
fails the intended audience validation, the resource server MUST
refuse to serve the respective request.

In general, audience restrictions limit the impact of token leakage.
In the case of a counterfeit resource server, it may (as described
below) also prevent abuse of the phished access token at the
legitimate resource server.

The audience can be expressed using logical names or physical
addresses (like URLs). To prevent phishing, it is necessary to use
the actual URL the client will send requests to. In the phishing
case, this URL will point to the counterfeit resource server. If the
attacker tries to use the access token at the legitimate resource
server (which has a different URL), the resource server will detect
the mismatch (wrong audience) and refuse to serve the request.

In deployments where the authorization server knows the URLs of all
resource servers, the authorization server may just refuse to issue
access tokens for unknown resource server URLs.

The client SHOULD tell the authorization server the intended resource
server. The proposed mechanism [RFC8707] could be used or by
encoding the information in the scope value.

Lodderstedt, et al. Expires 31 March 2023 [Page 36]

300 Draft: OAuth 2.0 Security Best Current Practice

Internet-Draft oauth-security-topics September 2022

Instead of the URL, it is also possible to utilize the fingerprint of
the resource server's X.509 certificate as audience value. This
variant would also allow to detect an attempt to spoof the legitimate
resource server's URL by using a valid TLS certificate obtained from
a different CA. It might also be considered a privacy benefit to
hide the resource server URL from the authorization server.

Audience restriction may seem easier to use since it does not require
any crypto on the client side. Still, since every access token is
bound to a specific resource server, the client also needs to obtain
a single RS-specific access token when accessing several resource
servers. (Resource indicators, as specified in [RFC8707], can help
to achieve this.) [I-D.ietf-oauth-token-binding] has the same
property since different token binding IDs must be associated with
the access token. Using [RFC8705], on the other hand, allows a
client to use the access token at multiple resource servers.

It should be noted that audience restrictions, or generally speaking
an indication by the client to the authorization server where it
wants to use the access token, has additional benefits beyond the
scope of token leakage prevention. It allows the authorization
server to create a different access token whose format and content is
specifically minted for the respective server. This has huge
functional and privacy advantages in deployments using structured
access tokens.

4.9.2. Compromised Resource Server

An attacker may compromise a resource server to gain access to the
resources of the respective deployment. Such a compromise may range
from partial access to the system, e.g., its log files, to full
control of the respective server.

If the attacker were able to gain full control, including shell
access, all controls can be circumvented and all resources can be
accessed. The attacker would also be able to obtain other access
tokens held on the compromised system that would potentially be valid
to access other resource servers.

Preventing server breaches by hardening and monitoring server systems
is considered a standard operational procedure and, therefore, out of
the scope of this document. This section focuses on the impact of
OAuth-related breaches and the replaying of captured access tokens.

The following measures should be taken into account by implementers
in order to cope with access token replay by malicious actors:

Lodderstedt, et al. Expires 31 March 2023 [Page 37]

Draft: OAuth 2.0 Security Best Current Practice 301

Internet-Draft oauth-security-topics September 2022

* Sender-constrained access tokens, as described in
Section 4.9.1.1.2, SHOULD be used to prevent the attacker from
replaying the access tokens on other resource servers. Depending
on the severity of the penetration, sender-constrained access
tokens will also prevent replay on the compromised system.

* Audience restriction as described in Section 4.9.1.1.3 SHOULD be
used to prevent replay of captured access tokens on other resource
servers.

* The resource server MUST treat access tokens like any other
credentials. It is considered good practice to not log them and
not store them in plain text.

The first and second recommendation also apply to other scenarios
where access tokens leak (see Attacker A5 in Section 3).

4.10. Open Redirection

The following attacks can occur when an AS or client has an open
redirector. An open redirector is an endpoint that forwards a user's
browser to an arbitrary URI obtained from a query parameter. Such
endpoints are sometimes implemented, for example, to show a message
before a user is then redirected to an external website, or to
redirect users back to a URL they were intending to visit before
being interrupted, e.g., by a login prompt.

4.10.1. Client as Open Redirector

Clients MUST NOT expose open redirectors. Attackers may use open
redirectors to produce URLs pointing to the client and utilize them
to exfiltrate authorization codes and access tokens, as described in
Section 4.1.2. Another abuse case is to produce URLs that appear to
point to the client. This might trick users into trusting the URL
and follow it in their browser. This can be abused for phishing.

In order to prevent open redirection, clients should only redirect if
the target URLs are whitelisted or if the origin and integrity of a
request can be authenticated. Countermeasures against open
redirection are described by OWASP [owasp_redir].

4.10.2. Authorization Server as Open Redirector

Just as with clients, attackers could try to utilize a user's trust
in the authorization server (and its URL in particular) for
performing phishing attacks. OAuth authorization servers regularly
redirect users to other web sites (the clients), but must do so in a
safe way.

Lodderstedt, et al. Expires 31 March 2023 [Page 38]

302 Draft: OAuth 2.0 Security Best Current Practice

Internet-Draft oauth-security-topics September 2022

[RFC6749], Section 4.1.2.1, already prevents open redirects by
stating that the AS MUST NOT automatically redirect the user agent in
case of an invalid combination of client_id and redirect_uri.

However, an attacker could also utilize a correctly registered
redirect URI to perform phishing attacks. The attacker could, for
example, register a client via dynamic client registration [RFC7591]
and intentionally send an erroneous authorization request, e.g., by
using an invalid scope value, thus instructing the AS to redirect the
user agent to its phishing site.

The AS MUST take precautions to prevent this threat. Based on its
risk assessment, the AS needs to decide whether it can trust the
redirect URI and SHOULD only automatically redirect the user agent if
it trusts the redirect URI. If the URI is not trusted, the AS MAY
inform the user and rely on the user to make the correct decision.

4.11. 307 Redirect

At the authorization endpoint, a typical protocol flow is that the AS
prompts the user to enter her credentials in a form that is then
submitted (using the HTTP POST method) back to the authorization
server. The AS checks the credentials and, if successful, redirects
the user agent to the client's redirection endpoint.

In [RFC6749], the HTTP status code 302 is used for this purpose, but
"any other method available via the user-agent to accomplish this
redirection is allowed". When the status code 307 is used for
redirection instead, the user agent will send the user's credentials
via HTTP POST to the client.

This discloses the sensitive credentials to the client. If the
client is malicious, it can use the credentials to impersonate the
user at the AS.

The behavior might be unexpected for developers, but is defined in
[RFC7231], Section 6.4.7. This status code does not require the user
agent to rewrite the POST request to a GET request and thereby drop
the form data in the POST request body.

In the HTTP standard [RFC7231], only the status code 303
unambigiously enforces rewriting the HTTP POST request to an HTTP GET
request. For all other status codes, including the popular 302, user
agents can opt not to rewrite POST to GET requests and therefore to
reveal the user's credentials to the client. (In practice, however,
most user agents will only show this behaviour for 307 redirects.)

Lodderstedt, et al. Expires 31 March 2023 [Page 39]

Draft: OAuth 2.0 Security Best Current Practice 303

Internet-Draft oauth-security-topics September 2022

ASs that redirect a request that potentially contains the user's
credentials therefore MUST NOT use the HTTP 307 status code for
redirection. If an HTTP redirection (and not, for example,
JavaScript) is used for such a request, the AS SHOULD use HTTP status
code 303 (See Other).

4.12. TLS Terminating Reverse Proxies

A common deployment architecture for HTTP applications is to hide the
application server behind a reverse proxy that terminates the TLS
connection and dispatches the incoming requests to the respective
application server nodes.

This section highlights some attack angles of this deployment
architecture with relevance to OAuth and gives recommendations for
security controls.

In some situations, the reverse proxy needs to pass security-related
data to the upstream application servers for further processing.
Examples include the IP address of the request originator, token
binding ids, and authenticated TLS client certificates. This data is
usually passed in custom HTTP headers added to the upstream request.

If the reverse proxy would pass through any header sent from the
outside, an attacker could try to directly send the faked header
values through the proxy to the application server in order to
circumvent security controls that way. For example, it is standard
practice of reverse proxies to accept X-Forwarded-For headers and
just add the origin of the inbound request (making it a list).
Depending on the logic performed in the application server, the
attacker could simply add a whitelisted IP address to the header and
render a IP whitelist useless.

A reverse proxy MUST therefore sanitize any inbound requests to
ensure the authenticity and integrity of all header values relevant
for the security of the application servers.

If an attacker were able to get access to the internal network
between proxy and application server, the attacker could also try to
circumvent security controls in place. It is, therefore, essential
to ensure the authenticity of the communicating entities.
Furthermore, the communication link between reverse proxy and
application server MUST be protected against eavesdropping,
injection, and replay of messages.

Lodderstedt, et al. Expires 31 March 2023 [Page 40]

304 Draft: OAuth 2.0 Security Best Current Practice

Internet-Draft oauth-security-topics September 2022

4.13. Refresh Token Protection

Refresh tokens are a convenient and user-friendly way to obtain new
access tokens after the expiration of access tokens. Refresh tokens
also add to the security of OAuth, since they allow the authorization
server to issue access tokens with a short lifetime and reduced
scope, thus reducing the potential impact of access token leakage.

4.13.1. Discussion

Refresh tokens are an attractive target for attackers, since they
represent the overall grant a resource owner delegated to a certain
client. If an attacker is able to exfiltrate and successfully replay
a refresh token, the attacker will be able to mint access tokens and
use them to access resource servers on behalf of the resource owner.

[RFC6749] already provides a robust baseline protection by requiring

* confidentiality of the refresh tokens in transit and storage,

* the transmission of refresh tokens over TLS-protected connections
between authorization server and client,

* the authorization server to maintain and check the binding of a
refresh token to a certain client and authentication of this
client during token refresh, if possible, and

* that refresh tokens cannot be generated, modified, or guessed.

[RFC6749] also lays the foundation for further (implementation
specific) security measures, such as refresh token expiration and
revocation as well as refresh token rotation by defining respective
error codes and response behaviors.

This specification gives recommendations beyond the scope of
[RFC6749] and clarifications.

4.13.2. Recommendations

Authorization servers SHOULD determine, based on a risk assessment,
whether to issue refresh tokens to a certain client. If the
authorization server decides not to issue refresh tokens, the client
MAY refresh access tokens by utilizing other grant types, such as the
authorization code grant type. In such a case, the authorization
server may utilize cookies and persistent grants to optimize the user
experience.

Lodderstedt, et al. Expires 31 March 2023 [Page 41]

Draft: OAuth 2.0 Security Best Current Practice 305

Internet-Draft oauth-security-topics September 2022

If refresh tokens are issued, those refresh tokens MUST be bound to
the scope and resource servers as consented by the resource owner.
This is to prevent privilege escalation by the legitimate client and
reduce the impact of refresh token leakage.

For confidential clients, [RFC6749] already requires that refresh
tokens can only be used by the client for which they were issued.

Authorization server MUST utilize one of these methods to detect
refresh token replay by malicious actors for public clients:

* *Sender-constrained refresh tokens:* the authorization server
cryptographically binds the refresh token to a certain client
instance, e.g., by utilizing [RFC8705] or [I-D.ietf-oauth-dpop].

* *Refresh token rotation:* the authorization server issues a new
refresh token with every access token refresh response. The
previous refresh token is invalidated but information about the
relationship is retained by the authorization server. If a
refresh token is compromised and subsequently used by both the
attacker and the legitimate client, one of them will present an
invalidated refresh token, which will inform the authorization
server of the breach. The authorization server cannot determine
which party submitted the invalid refresh token, but it will
revoke the active refresh token. This stops the attack at the
cost of forcing the legitimate client to obtain a fresh
authorization grant.

Implementation note: the grant to which a refresh token belongs
may be encoded into the refresh token itself. This can enable an
authorization server to efficiently determine the grant to which a
refresh token belongs, and by extension, all refresh tokens that
need to be revoked. Authorization servers MUST ensure the
integrity of the refresh token value in this case, for example,
using signatures.

Authorization servers MAY revoke refresh tokens automatically in case
of a security event, such as:

* password change

* logout at the authorization server

Lodderstedt, et al. Expires 31 March 2023 [Page 42]

306 Draft: OAuth 2.0 Security Best Current Practice

Internet-Draft oauth-security-topics September 2022

Refresh tokens SHOULD expire if the client has been inactive for some
time, i.e., the refresh token has not been used to obtain fresh
access tokens for some time. The expiration time is at the
discretion of the authorization server. It might be a global value
or determined based on the client policy or the grant associated with
the refresh token (and its sensitivity).

4.14. Client Impersonating Resource Owner

Resource servers may make access control decisions based on the
identity of a resource owner, for which an access token was issued,
or based on the identity of a client in the client credentials grant.
If both options are possible, depending on the details of the
implementation, a client's identity may be mistaken for the identity
of a resource owner. For example, if a client is able to choose its
own client_id during registration with the authorization server, a
malicious client may set it to a value identifying an end-user (e.g.,
a sub value if OpenID Connect is used). If the resource server
cannot properly distinguish between access tokens issued to clients
and access tokens issued to end-users, the client may then be able to
access resource of the end-user.

4.14.1. Countermeasures

Authorization servers SHOULD NOT allow clients to influence their
client_id or any other Claim if that can cause confusion with a
genuine resource owner. Where this cannot be avoided, authorization
servers MUST provide other means for the resource server to
distinguish between access tokens authorized by a resource owner from
access tokens authorized by the client itself.

4.15. Clickjacking

As described in Section 4.4.1.9 of [RFC6819], the authorization
request is susceptible to clickjacking attacks, also called user
interface redressing. In such an attack, an attacker embeds the
authorization endpoint user interface in an innocuous context. A
user believing to interact with that context, for example, clicking
on buttons, inadvertently interacts with the authorization endpoint
user interface instead. The opposite can be achieved as well: A user
believing to interact with the authorization endpoint might
inadvertently type a password into an attacker-provided input field
overlaid over the original user interface. Clickjacking attacks can
be designed such that users can hardly notice the attack, for example
using almost invisible iframes overlaid on top of other elements.

Lodderstedt, et al. Expires 31 March 2023 [Page 43]

Draft: OAuth 2.0 Security Best Current Practice 307

Internet-Draft oauth-security-topics September 2022

An attacker can use this vector to obtain the user's authentication
credentials, change the scope of access granted to the client, and
potentially access the user's resources.

Authorization servers MUST prevent clickjacking attacks. Multiple
countermeasures are described in [RFC6819], including the use of the
X-Frame-Options HTTP response header field and frame-busting
JavaScript. In addition to those, authorization servers SHOULD also
use Content Security Policy (CSP) level 2 [CSP-2] or greater.

To be effective, CSP must be used on the authorization endpoint and,
if applicable, other endpoints used to authenticate the user and
authorize the client (e.g., the device authorization endpoint, login
pages, error pages, etc.). This prevents framing by unauthorized
origins in user agents that support CSP. The client MAY permit being
framed by some other origin than the one used in its redirection
endpoint. For this reason, authorization servers SHOULD allow
administrators to configure allowed origins for particular clients
and/or for clients to register these dynamically.

Using CSP allows authorization servers to specify multiple origins in
a single response header field and to constrain these using flexible
patterns (see [CSP-2] for details). Level 2 of this standard
provides a robust mechanism for protecting against clickjacking by
using policies that restrict the origin of frames (using frame-
ancestors) together with those that restrict the sources of scripts
allowed to execute on an HTML page (by using script-src). A non-
normative example of such a policy is shown in the following listing:

HTTP/1.1 200 OK
Content-Security-Policy: frame-ancestors https://ext.example.org:8000
Content-Security-Policy: script-src 'self'
X-Frame-Options: ALLOW-FROM https://ext.example.org:8000
...

Because some user agents do not support [CSP-2], this technique
SHOULD be combined with others, including those described in
[RFC6819], unless such legacy user agents are explicitly unsupported
by the authorization server. Even in such cases, additional
countermeasures SHOULD still be employed.

4.16. Authorization Server Redirecting to Phishing Site

However, an attacker could also utilize a correctly registered
redirect URI to perform phishing attacks. The attacker could, for
example, register a client via dynamic client registration [RFC7591]
and execute one of the following attacks:

Lodderstedt, et al. Expires 31 March 2023 [Page 44]

308 Draft: OAuth 2.0 Security Best Current Practice

Internet-Draft oauth-security-topics September 2022

1. Intentionally send an erroneous authorization request, e.g., by
using an invalid scope value, thus instructing the AS to redirect
the user-agent to its phishing site.

2. Intentionally send a valid authorization request with client_id
and redirect_uri controlled by the attacker. After the user
authenticates, the AS prompts the user to provide consent to the
request. If the user notices an issue with the request and
declines the request, the AS still redirects the user agent to
the phishing site. In this case, the user agent will be
redirected to the phishing site regardless of the action taken by
the user.

3. Intentionally send a valid silent authentication request
(prompt=none) with client_id and redirect_uri controlled by the
attacker. In this case, the AS will automatically redirect the
user agent to the phishing site.

The AS MUST take precautions to prevent these threats. The AS MUST
always authenticate the user first and, with the exception of the
silent authentication use case, prompt the user for credentials when
needed, before redirecting the user. Based on its risk assessment,
the AS needs to decide whether it can trust the redirect URI or not.
It could take into account URI analytics done internally or through
some external service to evaluate the credibility and trustworthiness
content behind the URI, and the source of the redirect URI and other
client data.

The AS SHOULD only automatically redirect the user agent if it trusts
the redirect URI. If the URI is not trusted, the AS MAY inform the
user and rely on the user to make the correct decision.

5. Acknowledgements

We would like to thank Brock Allen, Annabelle Richard Backman,
Dominick Baier, Vittorio Bertocci, Brian Campbell, William Dennis,
George Fletscher, Dick Hardt, Joseph Heenan, Pedram Hosseyni, Phil
Hunt, Jared Jennings, Michael B. Jones, Konstantin Lapine, Neil
Madden, Christian Mainka, Jim Manico, Nov Matake, Doug McDorman,
Karsten Meyer zu Selhausen, Aaron Parecki, Michael Peck, Johan
Peeters, Nat Sakimura, Guido Schmitz, Travis Spencer, Petteri
Stenius, Tomek Stojecki, Tim Wuertele, David Waite and Hans Zandbelt
for their valuable feedback.

6. IANA Considerations

This draft makes no requests to IANA.

Lodderstedt, et al. Expires 31 March 2023 [Page 45]

Draft: OAuth 2.0 Security Best Current Practice 309

Internet-Draft oauth-security-topics September 2022

7. Security Considerations

Security considerations are described in Section 2, Section 3, and
Section 4.

8. Normative References

[RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
Threat Model and Security Considerations", RFC 6819,
DOI 10.17487/RFC6819, January 2013,
.

[RFC8414] Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0
Authorization Server Metadata", RFC 8414,
DOI 10.17487/RFC8414, June 2018,
.

[RFC8252] Denniss, W. and J. Bradley, "OAuth 2.0 for Native Apps",
BCP 212, RFC 8252, DOI 10.17487/RFC8252, October 2017,
.

[RFC8705] Campbell, B., Bradley, J., Sakimura, N., and T.
Lodderstedt, "OAuth 2.0 Mutual-TLS Client Authentication
and Certificate-Bound Access Tokens", February 2020,
.

[RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,
.

[OpenID.Discovery]
Sakimura, N., Bradley, J., Jones, M., and E. Jay, "OpenID
Connect Discovery 1.0 incorporating errata set 1", 8
November 2014, .

[RFC9068] Bertocci, V., "JSON Web Token (JWT) Profile for OAuth 2.0
Access Tokens", RFC 9068, DOI 10.17487/RFC9068, October
2021, .

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", STD 66,
RFC 3986, DOI 10.17487/RFC3986, January 2005,
.

Lodderstedt, et al. Expires 31 March 2023 [Page 46]

310 Draft: OAuth 2.0 Security Best Current Practice

Internet-Draft oauth-security-topics September 2022

[OpenID.Core]
Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and
C. Mortimore, "OpenID Connect Core 1.0 incorporating
errata set 1", 8 November 2014,
.

[RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
Framework: Bearer Token Usage", RFC 6750,
DOI 10.17487/RFC6750, October 2012,
.

[RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
DOI 10.17487/RFC7231, June 2014,
.

9. Informative References

[I-D.bradley-oauth-jwt-encoded-state]
Bradley, J., Lodderstedt, D. T., and H. Zandbelt,
"Encoding claims in the OAuth 2 state parameter using a
JWT", Work in Progress, Internet-Draft, draft-bradley-
oauth-jwt-encoded-state-09, 4 November 2018,
.

[RFC8473] Popov, A., Nystroem, M., Balfanz, D., Ed., Harper, N., and
J. Hodges, "Token Binding over HTTP", RFC 8473,
DOI 10.17487/RFC8473, October 2018,
.

[arXiv.1901.11520]
Fett, D., Hosseyni, P., and R. Küsters, "An Extensive
Formal Security Analysis of the OpenID Financial-grade
API", 31 January 2019, .

[RFC7800] Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-
Possession Key Semantics for JSON Web Tokens (JWTs)",
RFC 7800, DOI 10.17487/RFC7800, April 2016,
.

[CSP-2] West, M., Barth, A., and D. Veditz, "Content Security
Policy Level 2", July 2015, .

[JARM] Lodderstedt, T. and B. Campbell, "Financial-grade API: JWT
Secured Authorization Response Mode for OAuth 2.0 (JARM)",
17 October 2018,
.

Lodderstedt, et al. Expires 31 March 2023 [Page 47]

Draft: OAuth 2.0 Security Best Current Practice 311

Internet-Draft oauth-security-topics September 2022

[RFC7636] Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof Key
for Code Exchange by OAuth Public Clients", RFC 7636,
DOI 10.17487/RFC7636, September 2015,
.

[I-D.ietf-oauth-dpop]
Fett, D., Campbell, B., Bradley, J., Lodderstedt, T.,
Jones, M., and D. Waite, "OAuth 2.0 Demonstrating Proof-
of-Possession at the Application Layer (DPoP)", Work in
Progress, Internet-Draft, draft-ietf-oauth-dpop-11, 10
August 2022, .

[WebCrypto]
Watson, M., "Web Cryptography API", 26 January 2017,
.

[subdomaintakeover]
Liu, D., Hao, S., and H. Wang, "All Your DNS Records Point
to Us: Understanding the Security Threats of Dangling DNS
Records", 24 October 2016,
.

[RFC9126] Lodderstedt, T., Campbell, B., Sakimura, N., Tonge, D.,
and F. Skokan, "OAuth 2.0 Pushed Authorization Requests",
RFC 9126, DOI 10.17487/RFC9126, September 2021,
.

[RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",
RFC 7591, DOI 10.17487/RFC7591, July 2015,
.

[I-D.ietf-oauth-token-binding]
Jones, M. B., Campbell, B., Bradley, J., and W. Denniss,
"OAuth 2.0 Token Binding", Work in Progress, Internet-
Draft, draft-ietf-oauth-token-binding-08, 19 October 2018,
.

[oauth_security_ubc]
Sun, S.-T. and K. Beznosov, "The Devil is in the
(Implementation) Details: An Empirical Analysis of OAuth
SSO Systems", October 2012,
.

Lodderstedt, et al. Expires 31 March 2023 [Page 48]

312 Draft: OAuth 2.0 Security Best Current Practice

Internet-Draft oauth-security-topics September 2022

[oauth_security_jcs_14]
Bansal, C., Bhargavan, K., Delignat-Lavaud, A., and S.
Maffeis, "Discovering concrete attacks on website
authorization by formal analysis", 23 April 2014,
.

[owasp_redir]
"OWASP Cheat Sheet Series - Unvalidated Redirects and
Forwards",
.

[WebAuthn] Balfanz, D., Czeskis, A., Hodges, J., Jones, J.C., Jones,
M.B., Kumar, A., Liao, A., Lindemann, R., and E. Lundberg,
"Web Authentication: An API for accessing Public Key
Credentials Level 1", 4 March 2019,
.

[arXiv.1601.01229]
Fett, D., Küsters, R., and G. Schmitz, "A Comprehensive
Formal Security Analysis of OAuth 2.0", 6 January 2016,
.

[RFC9101] Sakimura, N., Bradley, J., and M. Jones, "The OAuth 2.0
Authorization Framework: JWT-Secured Authorization Request
(JAR)", RFC 9101, DOI 10.17487/RFC9101, August 2021,
.

[webappsec-referrer-policy]
Eisinger, J. and E. Stark, "Referrer Policy", 20 April
2017, .

[oauth_security_cmu]
Chen, E., Pei, Y., Chen, S., Tian, Y., Kotcher, R., and P.
Tague, "OAuth Demystified for Mobile Application
Developers", November 2014,
.

[I-D.ietf-oauth-iss-auth-resp]
Selhausen, K. M. Z. and D. Fett, "OAuth 2.0 Authorization
Server Issuer Identification", Work in Progress, Internet-
Draft, draft-ietf-oauth-iss-auth-resp-05, 11 January 2022,
.

Lodderstedt, et al. Expires 31 March 2023 [Page 49]

Draft: OAuth 2.0 Security Best Current Practice 313

Internet-Draft oauth-security-topics September 2022

[bug.chromium]
"Referer header includes URL fragment when opening link
using New Tab",
.

[OAuth.Post]
Jones, M. and B. Campbell, "OAuth 2.0 Form Post Response
Mode", 27 April 2015, .

[I-D.ietf-oauth-pop-key-distribution]
Bradley, J., Hunt, P., Jones, M. B., Tschofenig, H., and
M. Meszaros, "OAuth 2.0 Proof-of-Possession: Authorization
Server to Client Key Distribution", Work in Progress,
Internet-Draft, draft-ietf-oauth-pop-key-distribution-07,
27 March 2019, .

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
.

[I-D.ietf-oauth-rar]
Lodderstedt, T., Richer, J., and B. Campbell, "OAuth 2.0
Rich Authorization Requests", Work in Progress, Internet-
Draft, draft-ietf-oauth-rar-12, 5 May 2022,
.

[I-D.ietf-oauth-signed-http-request]
Richer, J., Bradley, J., and H. Tschofenig, "A Method for
Signing HTTP Requests for OAuth", Work in Progress,
Internet-Draft, draft-ietf-oauth-signed-http-request-03, 8
August 2016, .

[I-D.sakimura-oauth-jpop]
Sakimura, N., Li, K., and J. Bradley, "The OAuth 2.0
Authorization Framework: JWT Pop Token Usage", Work in
Progress, Internet-Draft, draft-sakimura-oauth-jpop-05, 22
July 2019, .

Lodderstedt, et al. Expires 31 March 2023 [Page 50]

314 Draft: OAuth 2.0 Security Best Current Practice

Internet-Draft oauth-security-topics September 2022

[RFC9207] Meyer zu Selhausen, K. and D. Fett, "OAuth 2.0
Authorization Server Issuer Identification", RFC 9207,
DOI 10.17487/RFC9207, March 2022,
.

[RFC8707] Campbell, B., Bradley, J., and H. Tschofenig, "Resource
Indicators for OAuth 2.0", RFC 8707, DOI 10.17487/RFC8707,
February 2020, .

[arXiv.1704.08539]
Fett, D., Küsters, R., and G. Schmitz, "The Web SSO
Standard OpenID Connect: In-Depth Formal Security Analysis
and Security Guidelines", 27 April 2017,
.

[arXiv.1508.04324v2]
Mladenov, V., Mainka, C., and J. Schwenk, "On the security
of modern Single Sign-On Protocols: Second-Order
Vulnerabilities in OpenID Connect", 7 January 2016,
.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, .

Appendix A. Document History

[[To be removed from the final specification]]

-20

* Improved description of authorization code injection attacks and
PKCE protection

* Removed recommendation for MTLS in discussion (not reflected in
actual Recommendations section)

* Reworded "placeholder" text in security considerations.

* Alphabetized list of names and fixed unicode problem

* Explained Clickjacking

* Explained Open Redirectors

* Clarified references to attacker model by including a link to
Section 3

Lodderstedt, et al. Expires 31 March 2023 [Page 51]

Draft: OAuth 2.0 Security Best Current Practice 315

Internet-Draft oauth-security-topics September 2022

* Clarified description of "CSRF tokens" and reference to RFC6819

* Described that OIDC can prevent access token injection

* Updated references

-19

* Changed affiliation of Andrey Labunets

* Editorial change to clarify the new recommendations for refresh
tokens

-18

* Fix editorial and spelling issues.

* Change wording for disallowing HTTP redirect URIs.

-17

* Make the use of metadata RECOMMENDED for both servers and clients

* Make announcing PKCE support in metadata the RECOMMENDED way
(before: either metadata or deployment-specific way)

* AS also MUST NOT expose open redirectors.

* Mention that attackers can collaborate.

* Update recommendations regarding mix-up defense, building upon
[I-D.ietf-oauth-iss-auth-resp].

* Improve description of mix-up attack.

* Make HTTPS mandatory for most redirect URIs.

-16

* Make MTLS a suggestion, not RECOMMENDED.

* Add important requirements when using nonce for code injection
protection.

* Highlight requirements for refresh token sender-constraining.

* Make PKCE a MUST for public clients.

Lodderstedt, et al. Expires 31 March 2023 [Page 52]

316 Draft: OAuth 2.0 Security Best Current Practice

Internet-Draft oauth-security-topics September 2022

* Describe PKCE Downgrade Attacks and countermeasures.

* Allow variable port numbers in localhost redirect URIs as in
RFC8252, Section 7.3.

-15

* Update reference to DPoP

* Fix reference to RFC8414

* Move to xml2rfcv3

-14

* Added info about using CSP to prevent clickjacking

* Changes from WGLC feedback

* Editorial changes

* AS MUST announce PKCE support either in metadata or using
deployment-specific ways (before: SHOULD)

-13

* Discourage use of Resource Owner Password Credentials Grant

* Added text on client impersonating resource owner

* Recommend asymmetric methods for client authentication

* Encourage use of PKCE mode "S256"

* PKCE may replace state for CSRF protection

* AS SHOULD publish PKCE support

* Cleaned up discussion on auth code injection

* AS MUST support PKCE

-12

* Added updated attacker model

-11

Lodderstedt, et al. Expires 31 March 2023 [Page 53]

Draft: OAuth 2.0 Security Best Current Practice 317

Internet-Draft oauth-security-topics September 2022

* Adapted section 2.1.2 to outcome of consensus call

* more text on refresh token inactivity and implementation note on
refresh token replay detection via refresh token rotation

-10

* incorporated feedback by Joseph Heenan

* changed occurrences of SHALL to MUST

* added text on lack of token/cert binding support tokens issued in
the authorization response as justification to not recommend
issuing tokens there at all

* added requirement to authenticate clients during code exchange
(PKCE or client credential) to 2.1.1.

* added section on refresh tokens

* editorial enhancements to 2.1.2 based on feedback

-09

* changed text to recommend not to use implicit but code

* added section on access token injection

* reworked sections 3.1 through 3.3 to be more specific on implicit
grant issues

-08

* added recommendations re implicit and token injection

* uppercased key words in Section 2 according to RFC 2119

-07

* incorporated findings of Doug McDorman

* added section on HTTP status codes for redirects

* added new section on access token privilege restriction based on
comments from Johan Peeters

-06

Lodderstedt, et al. Expires 31 March 2023 [Page 54]

318 Draft: OAuth 2.0 Security Best Current Practice

Internet-Draft oauth-security-topics September 2022

* reworked section 3.8.1

* incorporated Phil Hunt's feedback

* reworked section on mix-up

* extended section on code leakage via referrer header to also cover
state leakage

* added Daniel Fett as author

* replaced text intended to inform WG discussion by recommendations
to implementors

* modified example URLs to conform to RFC 2606

-05

* Completed sections on code leakage via referrer header, attacks in
browser, mix-up, and CSRF

* Reworked Code Injection Section

* Added reference to OpenID Connect spec

* removed refresh token leakage as respective considerations have
been given in section 10.4 of RFC 6749

* first version on open redirection

* incorporated Christian Mainka's review feedback

-04

* Restructured document for better readability

* Added best practices on Token Leakage prevention

-03

* Added section on Access Token Leakage at Resource Server

* incorporated Brian Campbell's findings

-02

* Folded Mix up and Access Token leakage through a bad AS into new
section for dynamic OAuth threats

Lodderstedt, et al. Expires 31 March 2023 [Page 55]

Draft: OAuth 2.0 Security Best Current Practice 319

Internet-Draft oauth-security-topics September 2022

* reworked dynamic OAuth section

-01

* Added references to mitigation methods for token leakage

* Added reference to Token Binding for Authorization Code

* incorporated feedback of Phil Hunt

* fixed numbering issue in attack descriptions in section 2

-00 (WG document)

* turned the ID into a WG document and a BCP

* Added federated app login as topic in Other Topics

Authors' Addresses

Torsten Lodderstedt
yes.com
Email: torsten@lodderstedt.net

John Bradley
Yubico
Email: ve7jtb@ve7jtb.com

Andrey Labunets
Independent Researcher
Email: isciurus@gmail.com

Daniel Fett
yes.com
Email: mail@danielfett.de

Lodderstedt, et al. Expires 31 March 2023 [Page 56]

320 Draft: OAuth 2.0 Security Best Current Practice

Chapter 8

RFC 8628: OAuth 2.0 Device
Authorization Grant

The Device Flow is an extension that enables devices with
no browser or limited input capability to obtain access
tokens. You’ll typically see this on devices like an Apple TV
where there is no web browser, or on "internet of things"
devices where there is no input mechanism other than a
few buttons.

The flow works by having users visit a URL on a secondary
device like a smartphone and entering a code that is
shown on the device. The device can accomplish the flow
without the need for a browser or interacting with the
user in any way other than getting them to visit the URL
and enter a code.

This flow is most widely seen on smart TVs, although there
are many more creative applications of it as well, such as
using it in cars or for command line applications.

RFC 8628: OAuth 2.0 Device Authorization Grant 321

322 RFC 8628: OAuth 2.0 Device Authorization Grant

Internet Engineering Task Force (IETF) W. Denniss
Request for Comments: 8628 Google
Category: Standards Track J. Bradley
ISSN: 2070-1721 Ping Identity

M. Jones
Microsoft

H. Tschofenig
ARM Limited
August 2019

OAuth 2.0 Device Authorization Grant

Abstract

The OAuth 2.0 device authorization grant is designed for Internet-
connected devices that either lack a browser to perform a user-agent-
based authorization or are input constrained to the extent that
requiring the user to input text in order to authenticate during the
authorization flow is impractical. It enables OAuth clients on such
devices (like smart TVs, media consoles, digital picture frames, and
printers) to obtain user authorization to access protected resources
by using a user agent on a separate device.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8628.

Denniss, et al. Standards Track [Page 1]

RFC 8628: OAuth 2.0 Device Authorization Grant 323

RFC 8628 OAuth 2.0 Device Grant August 2019

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 5
3. Protocol . 5

3.1. Device Authorization Request 5
3.2. Device Authorization Response 7
3.3. User Interaction . 8
3.3.1. Non-Textual Verification URI Optimization 9

3.4. Device Access Token Request 10
3.5. Device Access Token Response 11

4. Discovery Metadata . 12
5. Security Considerations 12

5.1. User Code Brute Forcing 12
5.2. Device Code Brute Forcing 13
5.3. Device Trustworthiness 13
5.4. Remote Phishing . 14
5.5. Session Spying . 15
5.6. Non-Confidential Clients 15
5.7. Non-Visual Code Transmission 15

6. Usability Considerations 16
6.1. User Code Recommendations 16
6.2. Non-Browser User Interaction 17

7. IANA Considerations . 17
7.1. OAuth Parameter Registration 17
7.2. OAuth URI Registration 17
7.3. OAuth Extensions Error Registration 18
7.4. OAuth Authorization Server Metadata 18

8. Normative References . 19
Acknowledgements . 20
Authors' Addresses . 21

Denniss, et al. Standards Track [Page 2]

324 RFC 8628: OAuth 2.0 Device Authorization Grant

RFC 8628 OAuth 2.0 Device Grant August 2019

1. Introduction

This OAuth 2.0 [RFC6749] protocol extension enables OAuth clients to
request user authorization from applications on devices that have
limited input capabilities or lack a suitable browser. Such devices
include smart TVs, media consoles, picture frames, and printers,
which lack an easy input method or a suitable browser required for
traditional OAuth interactions. The authorization flow defined by
this specification, sometimes referred to as the "device flow",
instructs the user to review the authorization request on a secondary
device, such as a smartphone, which does have the requisite input and
browser capabilities to complete the user interaction.

The device authorization grant is not intended to replace browser-
based OAuth in native apps on capable devices like smartphones.
Those apps should follow the practices specified in "OAuth 2.0 for
Native Apps" [RFC8252].

The operating requirements for using this authorization grant type
are:

(1) The device is already connected to the Internet.

(2) The device is able to make outbound HTTPS requests.

(3) The device is able to display or otherwise communicate a URI and
code sequence to the user.

(4) The user has a secondary device (e.g., personal computer or
smartphone) from which they can process the request.

As the device authorization grant does not require two-way
communication between the OAuth client on the device and the user
agent (unlike other OAuth 2 grant types, such as the authorization
code and implicit grant types), it supports several use cases that
cannot be served by those other approaches.

Instead of interacting directly with the end user's user agent (i.e.,
browser), the device client instructs the end user to use another
computer or device and connect to the authorization server to approve
the access request. Since the protocol supports clients that can't
receive incoming requests, clients poll the authorization server
repeatedly until the end user completes the approval process.

Denniss, et al. Standards Track [Page 3]

RFC 8628: OAuth 2.0 Device Authorization Grant 325

RFC 8628 OAuth 2.0 Device Grant August 2019

The device client typically chooses the set of authorization servers
to support (i.e., its own authorization server or those of providers
with which it has relationships). It is common for the device client
to support only one authorization server, such as in the case of a TV
application for a specific media provider that supports only that
media provider's authorization server. The user may not yet have an
established relationship with that authorization provider, though one
can potentially be set up during the authorization flow.

+----------+ +----------------+
	>---(A)-- Client Identifier --->	
	<---(B)-- Device Code, ---<	
	User Code,	
Device	& Verification URI	
Client		
	[polling]	
	>---(E)-- Device Code --->	
	& Client Identifier	
		Authorization
	<---(F)-- Access Token ---<	Server
+----------+ (& Optional Refresh Token) | |

v | |
: | |

(C) User Code & Verification URI | |
: | |
v | |

+----------+ | |
End User		
at	<---(D)-- End user reviews --->	
Browser	authorization request	
+----------+ +----------------+

Figure 1: Device Authorization Flow

The device authorization flow illustrated in Figure 1 includes the
following steps:

(A) The client requests access from the authorization server and
includes its client identifier in the request.

(B) The authorization server issues a device code and an end-user
code and provides the end-user verification URI.

(C) The client instructs the end user to use a user agent on another
device and visit the provided end-user verification URI. The
client provides the user with the end-user code to enter in
order to review the authorization request.

Denniss, et al. Standards Track [Page 4]

326 RFC 8628: OAuth 2.0 Device Authorization Grant

RFC 8628 OAuth 2.0 Device Grant August 2019

(D) The authorization server authenticates the end user (via the
user agent), and prompts the user to input the user code
provided by the device client. The authorization server
validates the user code provided by the user, and prompts the
user to accept or decline the request.

(E) While the end user reviews the client's request (step D), the
client repeatedly polls the authorization server to find out if
the user completed the user authorization step. The client
includes the device code and its client identifier.

(F) The authorization server validates the device code provided by
the client and responds with the access token if the client is
granted access, an error if they are denied access, or an
indication that the client should continue to poll.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

3. Protocol

3.1. Device Authorization Request

This specification defines a new OAuth endpoint: the device
authorization endpoint. This is separate from the OAuth
authorization endpoint defined in [RFC6749] with which the user
interacts via a user agent (i.e., a browser). By comparison, when
using the device authorization endpoint, the OAuth client on the
device interacts with the authorization server directly without
presenting the request in a user agent, and the end user authorizes
the request on a separate device. This interaction is defined as
follows.

The client initiates the authorization flow by requesting a set of
verification codes from the authorization server by making an HTTP
"POST" request to the device authorization endpoint.

Denniss, et al. Standards Track [Page 5]

RFC 8628: OAuth 2.0 Device Authorization Grant 327

RFC 8628 OAuth 2.0 Device Grant August 2019

The client makes a device authorization request to the device
authorization endpoint by including the following parameters using
the "application/x-www-form-urlencoded" format, per Appendix B of
[RFC6749], with a character encoding of UTF-8 in the HTTP request
entity-body:

client_id
REQUIRED if the client is not authenticating with the
authorization server as described in Section 3.2.1. of [RFC6749].
The client identifier as described in Section 2.2 of [RFC6749].

scope
OPTIONAL. The scope of the access request as defined by
Section 3.3 of [RFC6749].

For example, the client makes the following HTTPS request:

POST /device_authorization HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded

client_id=1406020730≻ope=example_scope

All requests from the device MUST use the Transport Layer Security
(TLS) protocol [RFC8446] and implement the best practices of BCP 195
[RFC7525].

Parameters sent without a value MUST be treated as if they were
omitted from the request. The authorization server MUST ignore
unrecognized request parameters. Request and response parameters
MUST NOT be included more than once.

The client authentication requirements of Section 3.2.1 of [RFC6749]
apply to requests on this endpoint, which means that confidential
clients (those that have established client credentials) authenticate
in the same manner as when making requests to the token endpoint, and
public clients provide the "client_id" parameter to identify
themselves.

Due to the polling nature of this protocol (as specified in
Section 3.4), care is needed to avoid overloading the capacity of the
token endpoint. To avoid unneeded requests on the token endpoint,
the client SHOULD only commence a device authorization request when
prompted by the user and not automatically, such as when the app
starts or when the previous authorization session expires or fails.

Denniss, et al. Standards Track [Page 6]

328 RFC 8628: OAuth 2.0 Device Authorization Grant

RFC 8628 OAuth 2.0 Device Grant August 2019

3.2. Device Authorization Response

In response, the authorization server generates a unique device
verification code and an end-user code that are valid for a limited
time and includes them in the HTTP response body using the
"application/json" format [RFC8259] with a 200 (OK) status code. The
response contains the following parameters:

device_code
REQUIRED. The device verification code.

user_code
REQUIRED. The end-user verification code.

verification_uri
REQUIRED. The end-user verification URI on the authorization
server. The URI should be short and easy to remember as end users
will be asked to manually type it into their user agent.

verification_uri_complete
OPTIONAL. A verification URI that includes the "user_code" (or
other information with the same function as the "user_code"),
which is designed for non-textual transmission.

expires_in
REQUIRED. The lifetime in seconds of the "device_code" and
"user_code".

interval
OPTIONAL. The minimum amount of time in seconds that the client
SHOULD wait between polling requests to the token endpoint. If no
value is provided, clients MUST use 5 as the default.

For example:

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{
"device_code": "GmRhmhcxhwAzkoEqiMEg_DnyEysNkuNhszIySk9eS",
"user_code": "WDJB-MJHT",
"verification_uri": "https://example.com/device",
"verification_uri_complete":

"https://example.com/device?user_code=WDJB-MJHT",
"expires_in": 1800,
"interval": 5

}

Denniss, et al. Standards Track [Page 7]

RFC 8628: OAuth 2.0 Device Authorization Grant 329

RFC 8628 OAuth 2.0 Device Grant August 2019

In the event of an error (such as an invalidly configured client),
the authorization server responds in the same way as the token
endpoint specified in Section 5.2 of [RFC6749].

3.3. User Interaction

After receiving a successful authorization response, the client
displays or otherwise communicates the "user_code" and the
"verification_uri" to the end user and instructs them to visit the
URI in a user agent on a secondary device (for example, in a browser
on their mobile phone) and enter the user code.

+---+
| |
| Using a browser on another device, visit: |
| https://example.com/device |
| |
| And enter the code: |
| WDJB-MJHT |
| |
+---+

Figure 2: Example User Instruction

The authorizing user navigates to the "verification_uri" and
authenticates with the authorization server in a secure TLS-protected
[RFC8446] session. The authorization server prompts the end user to
identify the device authorization session by entering the "user_code"
provided by the client. The authorization server should then inform
the user about the action they are undertaking and ask them to
approve or deny the request. Once the user interaction is complete,
the server instructs the user to return to their device.

During the user interaction, the device continuously polls the token
endpoint with the "device_code", as detailed in Section 3.4, until
the user completes the interaction, the code expires, or another
error occurs. The "device_code" is not intended for the end user
directly; thus, it should not be displayed during the interaction to
avoid confusing the end user.

Authorization servers supporting this specification MUST implement a
user-interaction sequence that starts with the user navigating to
"verification_uri" and continues with them supplying the "user_code"
at some stage during the interaction. Other than that, the exact
sequence and implementation of the user interaction is up to the
authorization server; for example, the authorization server may
enable new users to sign up for an account during the authorization
flow or add additional security verification steps.

Denniss, et al. Standards Track [Page 8]

330 RFC 8628: OAuth 2.0 Device Authorization Grant

RFC 8628 OAuth 2.0 Device Grant August 2019

It is NOT RECOMMENDED for authorization servers to include the user
code ("user_code") in the verification URI ("verification_uri"), as
this increases the length and complexity of the URI that the user
must type. While the user must still type a similar number of
characters with the "user_code" separated, once they successfully
navigate to the "verification_uri", any errors in entering the code
can be highlighted by the authorization server to improve the user
experience. The next section documents the user interaction with
"verification_uri_complete", which is designed to carry both pieces
of information.

3.3.1. Non-Textual Verification URI Optimization

When "verification_uri_complete" is included in the authorization
response (Section 3.2), clients MAY present this URI in a non-textual
manner using any method that results in the browser being opened with
the URI, such as with QR (Quick Response) codes or NFC (Near Field
Communication), to save the user from typing the URI.

For usability reasons, it is RECOMMENDED for clients to still display
the textual verification URI ("verification_uri") for users who are
not able to use such a shortcut. Clients MUST still display the
"user_code", as the authorization server will require the user to
confirm it to disambiguate devices or as remote phishing mitigation
(see Section 5.4).

If the user starts the user interaction by navigating to
"verification_uri_complete", then the user interaction described in
Section 3.3 is still followed, with the optimization that the user
does not need to type in the "user_code". The server SHOULD display
the "user_code" to the user and ask them to verify that it matches
the "user_code" being displayed on the device to confirm they are
authorizing the correct device. As before, in addition to taking
steps to confirm the identity of the device, the user should also be
afforded the choice to approve or deny the authorization request.

Denniss, et al. Standards Track [Page 9]

RFC 8628: OAuth 2.0 Device Authorization Grant 331

RFC 8628 OAuth 2.0 Device Grant August 2019

+---+
| |
| Scan the QR code or, using +------------+ |
a browser on another device,	[_].. . [_]	
visit:	
https://example.com/device	
	
And enter the code:	[_].	
WDJB-MJHT +------------+		
+---+

Figure 3: Example User Instruction with QR Code Representation
of the Complete Verification URI

3.4. Device Access Token Request

After displaying instructions to the user, the client creates an
access token request and sends it to the token endpoint (as defined
by Section 3.2 of [RFC6749]) with a "grant_type" of
"urn:ietf:params:oauth:grant-type:device_code". This is an extension
grant type (as defined by Section 4.5 of [RFC6749]) created by this
specification, with the following parameters:

grant_type
REQUIRED. Value MUST be set to
"urn:ietf:params:oauth:grant-type:device_code".

device_code
REQUIRED. The device verification code, "device_code" from the
device authorization response, defined in Section 3.2.

client_id
REQUIRED if the client is not authenticating with the
authorization server as described in Section 3.2.1. of [RFC6749].
The client identifier as described in Section 2.2 of [RFC6749].

For example, the client makes the following HTTPS request (line
breaks are for display purposes only):

POST /token HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded

grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Adevice_code
&device_code=GmRhmhcxhwAzkoEqiMEg_DnyEysNkuNhszIySk9eS
&client_id=1406020730

Denniss, et al. Standards Track [Page 10]

332 RFC 8628: OAuth 2.0 Device Authorization Grant

RFC 8628 OAuth 2.0 Device Grant August 2019

If the client was issued client credentials (or assigned other
authentication requirements), the client MUST authenticate with the
authorization server as described in Section 3.2.1 of [RFC6749].
Note that there are security implications of statically distributed
client credentials; see Section 5.6.

The response to this request is defined in Section 3.5. Unlike other
OAuth grant types, it is expected for the client to try the access
token request repeatedly in a polling fashion based on the error code
in the response.

3.5. Device Access Token Response

If the user has approved the grant, the token endpoint responds with
a success response defined in Section 5.1 of [RFC6749]; otherwise, it
responds with an error, as defined in Section 5.2 of [RFC6749].

In addition to the error codes defined in Section 5.2 of [RFC6749],
the following error codes are specified for use with the device
authorization grant in token endpoint responses:

authorization_pending
The authorization request is still pending as the end user hasn't
yet completed the user-interaction steps (Section 3.3). The
client SHOULD repeat the access token request to the token
endpoint (a process known as polling). Before each new request,
the client MUST wait at least the number of seconds specified by
the "interval" parameter of the device authorization response (see
Section 3.2), or 5 seconds if none was provided, and respect any
increase in the polling interval required by the "slow_down"
error.

slow_down
A variant of "authorization_pending", the authorization request is
still pending and polling should continue, but the interval MUST
be increased by 5 seconds for this and all subsequent requests.

access_denied
The authorization request was denied.

expired_token
The "device_code" has expired, and the device authorization
session has concluded. The client MAY commence a new device
authorization request but SHOULD wait for user interaction before
restarting to avoid unnecessary polling.

Denniss, et al. Standards Track [Page 11]

RFC 8628: OAuth 2.0 Device Authorization Grant 333

RFC 8628 OAuth 2.0 Device Grant August 2019

The "authorization_pending" and "slow_down" error codes define
particularly unique behavior, as they indicate that the OAuth client
should continue to poll the token endpoint by repeating the token
request (implementing the precise behavior defined above). If the
client receives an error response with any other error code, it MUST
stop polling and SHOULD react accordingly, for example, by displaying
an error to the user.

On encountering a connection timeout, clients MUST unilaterally
reduce their polling frequency before retrying. The use of an
exponential backoff algorithm to achieve this, such as doubling the
polling interval on each such connection timeout, is RECOMMENDED.

The assumption of this specification is that the separate device on
which the user is authorizing the request does not have a way to
communicate back to the device with the OAuth client. This protocol
only requires a one-way channel in order to maximize the viability of
the protocol in restricted environments, like an application running
on a TV that is only capable of outbound requests. If a return
channel were to exist for the chosen user-interaction interface, then
the device MAY wait until notified on that channel that the user has
completed the action before initiating the token request (as an
alternative to polling). Such behavior is, however, outside the
scope of this specification.

4. Discovery Metadata

Support for this protocol is declared in OAuth 2.0 Authorization
Server Metadata [RFC8414] as follows. The value
"urn:ietf:params:oauth:grant-type:device_code" is included in values
of the "grant_types_supported" key, and the following new key value
pair is added:

device_authorization_endpoint
OPTIONAL. URL of the authorization server's device authorization
endpoint, as defined in Section 3.1.

5. Security Considerations

5.1. User Code Brute Forcing

Since the user code is typed by the user, shorter codes are more
desirable for usability reasons. This means the entropy is typically
less than would be used for the device code or other OAuth bearer
token types where the code length does not impact usability.
Therefore, it is recommended that the server rate-limit user code
attempts.

Denniss, et al. Standards Track [Page 12]

334 RFC 8628: OAuth 2.0 Device Authorization Grant

RFC 8628 OAuth 2.0 Device Grant August 2019

The user code SHOULD have enough entropy that, when combined with
rate-limiting and other mitigations, a brute-force attack becomes
infeasible. For example, it's generally held that 128-bit symmetric
keys for encryption are seen as good enough today because an attacker
has to put in 2^96 work to have a 2^-32 chance of guessing correctly
via brute force. The rate-limiting and finite lifetime on the user
code place an artificial limit on the amount of work an attacker can
"do". If, for instance, one uses an 8-character base 20 user code
(with roughly 34.5 bits of entropy), the rate-limiting interval and
validity period would need to only allow 5 attempts in order to get
the same 2^-32 probability of success by random guessing.

A successful brute forcing of the user code would enable the attacker
to approve the authorization grant with their own credentials, after
which the device would receive a device authorization grant linked to
the attacker's account. This is the opposite scenario to an OAuth
bearer token being brute forced, whereby the attacker gains control
of the victim's authorization grant. Such attacks may not always
make economic sense. For example, for a video app, the device owner
may then be able to purchase movies using the attacker's account
(though even in this case a privacy risk would still remain and thus
is important to protect against). Furthermore, some uses of the
device flow give the granting account the ability to perform actions
that need to be protected, such as controlling the device.

The precise length of the user code and the entropy contained within
is at the discretion of the authorization server, which needs to
consider the sensitivity of their specific protected resources, the
practicality of the code length from a usability standpoint, and any
mitigations that are in place, such as rate-limiting, when
determining the user code format.

5.2. Device Code Brute Forcing

An attacker who guesses the device code would be able to potentially
obtain the authorization code once the user completes the flow. As
the device code is not displayed to the user and thus there are no
usability considerations on the length, a very high entropy code
SHOULD be used.

5.3. Device Trustworthiness

Unlike other native application OAuth 2.0 flows, the device
requesting the authorization is not the same as the device from which
the user grants access. Thus, signals from the approving user's
session and device are not always relevant to the trustworthiness of
the client device.

Denniss, et al. Standards Track [Page 13]

RFC 8628: OAuth 2.0 Device Authorization Grant 335

RFC 8628 OAuth 2.0 Device Grant August 2019

Note that if an authorization server used with this flow is
malicious, then it could perform a man-in-the-middle attack on the
backchannel flow to another authorization server. In this scenario,
the man-in-the-middle is not completely hidden from sight, as the end
user would end up on the authorization page of the wrong service,
giving them an opportunity to notice that the URL in the browser's
address bar is wrong. For this to be possible, the device
manufacturer must either be the attacker and shipping a device
intended to perform the man-in-the-middle attack, or be using an
authorization server that is controlled by an attacker, possibly
because the attacker compromised the authorization server used by the
device. In part, the person purchasing the device is counting on the
manufacturer and its business partners to be trustworthy.

5.4. Remote Phishing

It is possible for the device flow to be initiated on a device in an
attacker's possession. For example, an attacker might send an email
instructing the target user to visit the verification URL and enter
the user code. To mitigate such an attack, it is RECOMMENDED to
inform the user that they are authorizing a device during the user-
interaction step (see Section 3.3) and to confirm that the device is
in their possession. The authorization server SHOULD display
information about the device so that the user could notice if a
software client was attempting to impersonate a hardware device.

For authorization servers that support the
"verification_uri_complete" optimization discussed in Section 3.3.1,
it is particularly important to confirm that the device is in the
user's possession, as the user no longer has to type in the code
being displayed on the device manually. One suggestion is to display
the code during the authorization flow and ask the user to verify
that the same code is currently being displayed on the device they
are setting up.

The user code needs to have a long enough lifetime to be useable
(allowing the user to retrieve their secondary device, navigate to
the verification URI, log in, etc.) but should be sufficiently short
to limit the usability of a code obtained for phishing. This doesn't
prevent a phisher from presenting a fresh token, particularly if they
are interacting with the user in real time, but it does limit the
viability of codes sent over email or text message.

Denniss, et al. Standards Track [Page 14]

336 RFC 8628: OAuth 2.0 Device Authorization Grant

RFC 8628 OAuth 2.0 Device Grant August 2019

5.5. Session Spying

While the device is pending authorization, it may be possible for a
malicious user to physically spy on the device user interface (by
viewing the screen on which it's displayed, for example) and hijack
the session by completing the authorization faster than the user that
initiated it. Devices SHOULD take into account the operating
environment when considering how to communicate the code to the user
to reduce the chances it will be observed by a malicious user.

5.6. Non-Confidential Clients

Device clients are generally incapable of maintaining the
confidentiality of their credentials, as users in possession of the
device can reverse-engineer it and extract the credentials.
Therefore, unless additional measures are taken, they should be
treated as public clients (as defined by Section 2.1 of [RFC6749]),
which are susceptible to impersonation. The security considerations
of Section 5.3.1 of [RFC6819] and Sections 8.5 and 8.6 of [RFC8252]
apply to such clients.

The user may also be able to obtain the "device_code" and/or other
OAuth bearer tokens issued to their client, which would allow them to
use their own authorization grant directly by impersonating the
client. Given that the user in possession of the client credentials
can already impersonate the client and create a new authorization
grant (with a new "device_code"), this doesn't represent a separate
impersonation vector.

5.7. Non-Visual Code Transmission

There is no requirement that the user code be displayed by the device
visually. Other methods of one-way communication can potentially be
used, such as text-to-speech audio or Bluetooth Low Energy. To
mitigate an attack in which a malicious user can bootstrap their
credentials on a device not in their control, it is RECOMMENDED that
any chosen communication channel only be accessible by people in
close proximity, for example, users who can see or hear the device.

Denniss, et al. Standards Track [Page 15]

RFC 8628: OAuth 2.0 Device Authorization Grant 337

RFC 8628 OAuth 2.0 Device Grant August 2019

6. Usability Considerations

This section is a non-normative discussion of usability
considerations.

6.1. User Code Recommendations

For many users, their nearest Internet-connected device will be their
mobile phone; typically, these devices offer input methods that are
more time-consuming than a computer keyboard to change the case or
input numbers. To improve usability (improving entry speed and
reducing retries), the limitations of such devices should be taken
into account when selecting the user code character set.

One way to improve input speed is to restrict the character set to
case-insensitive A-Z characters, with no digits. These characters
can typically be entered on a mobile keyboard without using modifier
keys. Further removing vowels to avoid randomly creating words
results in the base 20 character set "BCDFGHJKLMNPQRSTVWXZ". Dashes
or other punctuation may be included for readability.

An example user code following this guideline, "WDJB-MJHT", contains
8 significant characters and has dashes added for end-user
readability. The resulting entropy is 20^8.

Pure numeric codes are also a good choice for usability, especially
for clients targeting locales where A-Z character keyboards are not
used, though the length of such a code needs to be longer to maintain
high entropy.

An example numeric user code that contains 9 significant digits and
dashes added for end-user readability with an entropy of 10^9 is
"019-450-730".

When processing the inputted user code, the server should strip
dashes and other punctuation that it added for readability (making
the inclusion of such punctuation by the user optional). For codes
using only characters in the A-Z range, as with the base 20 charset
defined above, the user's input should be uppercased before a
comparison to account for the fact that the user may input the
equivalent lowercase characters. Further stripping of all characters
outside the chosen character set is recommended to reduce instances
where an errantly typed character (like a space character)
invalidates otherwise valid input.

Denniss, et al. Standards Track [Page 16]

338 RFC 8628: OAuth 2.0 Device Authorization Grant

RFC 8628 OAuth 2.0 Device Grant August 2019

It is RECOMMENDED to avoid character sets that contain two or more
characters that can easily be confused with each other, like "0" and
"O" or "1", "l" and "I". Furthermore, to the extent practical, when
a character set contains a character that may be confused with
characters outside the character set, a character outside the set MAY
be substituted with the one in the character set with which it is
commonly confused; for example, "O" may be substituted for "0" when
using the numerical 0-9 character set.

6.2. Non-Browser User Interaction

Devices and authorization servers MAY negotiate an alternative code
transmission and user-interaction method in addition to the one
described in Section 3.3. Such an alternative user-interaction flow
could obviate the need for a browser and manual input of the code,
for example, by using Bluetooth to transmit the code to the
authorization server's companion app. Such interaction methods can
utilize this protocol as, ultimately, the user just needs to identify
the authorization session to the authorization server; however, user
interaction other than through the verification URI is outside the
scope of this specification.

7. IANA Considerations

7.1. OAuth Parameter Registration

This specification registers the following values in the IANA "OAuth
Parameters" registry [IANA.OAuth.Parameters] established by
[RFC6749].

Name: device_code
Parameter Usage Location: token request
Change Controller: IESG
Reference: Section 3.4 of RFC 8628

7.2. OAuth URI Registration

This specification registers the following values in the IANA "OAuth
URI" registry [IANA.OAuth.Parameters] established by [RFC6755].

URN: urn:ietf:params:oauth:grant-type:device_code
Common Name: Device Authorization Grant Type for OAuth 2.0
Change Controller: IESG
Specification Document: Section 3.4 of RFC 8628

Denniss, et al. Standards Track [Page 17]

RFC 8628: OAuth 2.0 Device Authorization Grant 339

RFC 8628 OAuth 2.0 Device Grant August 2019

7.3. OAuth Extensions Error Registration

This specification registers the following values in the IANA "OAuth
Extensions Error Registry" registry [IANA.OAuth.Parameters]
established by [RFC6749].

Name: authorization_pending
Usage Location: Token endpoint response
Protocol Extension: RFC 8628
Change Controller: IETF
Reference: Section 3.5 of RFC 8628

Name: access_denied
Usage Location: Token endpoint response
Protocol Extension: RFC 8628
Change Controller: IETF
Reference: Section 3.5 of RFC 8628

Name: slow_down
Usage Location: Token endpoint response
Protocol Extension: RFC 8628
Change Controller: IETF
Reference: Section 3.5 of RFC 8628

Name: expired_token
Usage Location: Token endpoint response
Protocol Extension: RFC 8628
Change Controller: IETF
Reference: Section 3.5 of RFC 8628

7.4. OAuth Authorization Server Metadata

This specification registers the following values in the IANA "OAuth
Authorization Server Metadata" registry [IANA.OAuth.Parameters]
established by [RFC8414].

Metadata name: device_authorization_endpoint
Metadata Description: URL of the authorization server's device
authorization endpoint
Change Controller: IESG
Reference: Section 4 of RFC 8628

Denniss, et al. Standards Track [Page 18]

340 RFC 8628: OAuth 2.0 Device Authorization Grant

RFC 8628 OAuth 2.0 Device Grant August 2019

8. Normative References

[IANA.OAuth.Parameters]
IANA, "OAuth Parameters",
.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
.

[RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,
.

[RFC6755] Campbell, B. and H. Tschofenig, "An IETF URN Sub-Namespace
for OAuth", RFC 6755, DOI 10.17487/RFC6755, October 2012,
.

[RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
Threat Model and Security Considerations", RFC 6819,
DOI 10.17487/RFC6819, January 2013,
.

[RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
"Recommendations for Secure Use of Transport Layer
Security (TLS) and Datagram Transport Layer Security
(DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
2015, .

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, .

[RFC8252] Denniss, W. and J. Bradley, "OAuth 2.0 for Native Apps",
BCP 212, RFC 8252, DOI 10.17487/RFC8252, October 2017,
.

[RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
Interchange Format", STD 90, RFC 8259,
DOI 10.17487/RFC8259, December 2017,
.

[RFC8414] Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0
Authorization Server Metadata", RFC 8414,
DOI 10.17487/RFC8414, June 2018,
.

Denniss, et al. Standards Track [Page 19]

RFC 8628: OAuth 2.0 Device Authorization Grant 341

RFC 8628 OAuth 2.0 Device Grant August 2019

[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
.

Acknowledgements

The starting point for this document was the Internet-Draft
draft-recordon-oauth-v2-device, authored by David Recordon and Brent
Goldman, which itself was based on content in draft versions of the
OAuth 2.0 protocol specification removed prior to publication due to
a then-lack of sufficient deployment expertise. Thank you to the
OAuth Working Group members who contributed to those earlier drafts.

This document was produced in the OAuth Working Group under the
chairpersonship of Rifaat Shekh-Yusef and Hannes Tschofenig, with
Benjamin Kaduk, Kathleen Moriarty, and Eric Rescorla serving as
Security Area Directors.

The following individuals contributed ideas, feedback, and wording
that shaped and formed the final specification:

Ben Campbell, Brian Campbell, Roshni Chandrashekhar, Alissa Cooper,
Eric Fazendin, Benjamin Kaduk, Jamshid Khosravian, Mirja Kuehlewind,
Torsten Lodderstedt, James Manger, Dan McNulty, Breno de Medeiros,
Alexey Melnikov, Simon Moffatt, Stein Myrseth, Emond Papegaaij,
Justin Richer, Adam Roach, Nat Sakimura, Andrew Sciberras, Marius
Scurtescu, Filip Skokan, Robert Sparks, Ken Wang, Christopher Wood,
Steven E. Wright, and Qin Wu.

Denniss, et al. Standards Track [Page 20]

342 RFC 8628: OAuth 2.0 Device Authorization Grant

RFC 8628 OAuth 2.0 Device Grant August 2019

Authors' Addresses

William Denniss
Google
1600 Amphitheatre Pkwy
Mountain View, CA 94043
United States of America

Email: wdenniss@google.com
URI: https://wdenniss.com/deviceflow

John Bradley
Ping Identity

Email: ve7jtb@ve7jtb.com
URI: http://www.thread-safe.com/

Michael B. Jones
Microsoft

Email: mbj@microsoft.com
URI: http://self-issued.info/

Hannes Tschofenig
ARM Limited
Austria

Email: Hannes.Tschofenig@gmx.net
URI: http://www.tschofenig.priv.at

Denniss, et al. Standards Track [Page 21]

RFC 8628: OAuth 2.0 Device Authorization Grant 343

344 RFC 8628: OAuth 2.0 Device Authorization Grant

Chapter 9

RFC 7009: OAuth 2.0 Token
Revocation

Token Revocation describes a new endpoint on the
authorization server that clients can use to notify the
server that an access token or refresh token is no longer
needed. This is used to enable a “log out” feature in
clients, allowing the authorization server to clean up any
tokens or other data associated with that session.

RFC 7009: OAuth 2.0 Token Revocation 345

346 RFC 7009: OAuth 2.0 Token Revocation

Internet Engineering Task Force (IETF) T. Lodderstedt, Ed.
Request for Comments: 7009 Deutsche Telekom AG
Category: Standards Track S. Dronia
ISSN: 2070-1721

M. Scurtescu
Google

August 2013

OAuth 2.0 Token Revocation

Abstract

This document proposes an additional endpoint for OAuth authorization
servers, which allows clients to notify the authorization server that
a previously obtained refresh or access token is no longer needed.
This allows the authorization server to clean up security
credentials. A revocation request will invalidate the actual token
and, if applicable, other tokens based on the same authorization
grant.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.

Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7009.

Lodderstedt, et al. Standards Track [Page 1]

RFC 7009: OAuth 2.0 Token Revocation 347

RFC 7009 Token Revocation August 2013

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Requirements Language 3

2. Token Revocation . 3
2.1. Revocation Request 4
2.2. Revocation Response 5
2.2.1. Error Response 6

2.3. Cross-Origin Support 6
3. Implementation Note . 7
4. IANA Considerations . 8

4.1. OAuth Extensions Error Registration 8
4.1.1. The "unsupported_token_type" Error Value 8
4.1.2. OAuth Token Type Hints Registry 8
4.1.2.1. Registration Template 9
4.1.2.2. Initial Registry Contents 9

5. Security Considerations 9
6. Acknowledgements . 10
7. References . 10

7.1. Normative References 10
7.2. Informative References 11

Lodderstedt, et al. Standards Track [Page 2]

348 RFC 7009: OAuth 2.0 Token Revocation

RFC 7009 Token Revocation August 2013

1. Introduction

The OAuth 2.0 core specification [RFC6749] defines several ways for a
client to obtain refresh and access tokens. This specification
supplements the core specification with a mechanism to revoke both
types of tokens. A token is a string representing an authorization
grant issued by the resource owner to the client. A revocation
request will invalidate the actual token and, if applicable, other
tokens based on the same authorization grant and the authorization
grant itself.

From an end-user's perspective, OAuth is often used to log into a
certain site or application. This revocation mechanism allows a
client to invalidate its tokens if the end-user logs out, changes
identity, or uninstalls the respective application. Notifying the
authorization server that the token is no longer needed allows the
authorization server to clean up data associated with that token
(e.g., session data) and the underlying authorization grant. This
behavior prevents a situation in which there is still a valid
authorization grant for a particular client of which the end-user is
not aware. This way, token revocation prevents abuse of abandoned
tokens and facilitates a better end-user experience since invalidated
authorization grants will no longer turn up in a list of
authorization grants the authorization server might present to the
end-user.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].

2. Token Revocation

Implementations MUST support the revocation of refresh tokens and
SHOULD support the revocation of access tokens (see Implementation
Note).

The client requests the revocation of a particular token by making an
HTTP POST request to the token revocation endpoint URL. This URL
MUST conform to the rules given in [RFC6749], Section 3.1. Clients
MUST verify that the URL is an HTTPS URL.

The means to obtain the location of the revocation endpoint is out of
the scope of this specification. For example, the client developer
may consult the server's documentation or automatic discovery may be
used. As this endpoint is handling security credentials, the
endpoint location needs to be obtained from a trustworthy source.

Lodderstedt, et al. Standards Track [Page 3]

RFC 7009: OAuth 2.0 Token Revocation 349

RFC 7009 Token Revocation August 2013

Since requests to the token revocation endpoint result in the
transmission of plaintext credentials in the HTTP request, URLs for
token revocation endpoints MUST be HTTPS URLs. The authorization
server MUST use Transport Layer Security (TLS) [RFC5246] in a version
compliant with [RFC6749], Section 1.6. Implementations MAY also
support additional transport-layer security mechanisms that meet
their security requirements.

If the host of the token revocation endpoint can also be reached over
HTTP, then the server SHOULD also offer a revocation service at the
corresponding HTTP URI, but it MUST NOT publish this URI as a token
revocation endpoint. This ensures that tokens accidentally sent over
HTTP will be revoked.

2.1. Revocation Request

The client constructs the request by including the following
parameters using the "application/x-www-form-urlencoded" format in
the HTTP request entity-body:

token REQUIRED. The token that the client wants to get revoked.

token_type_hint OPTIONAL. A hint about the type of the token
submitted for revocation. Clients MAY pass this parameter in
order to help the authorization server to optimize the token
lookup. If the server is unable to locate the token using
the given hint, it MUST extend its search across all of its
supported token types. An authorization server MAY ignore
this parameter, particularly if it is able to detect the
token type automatically. This specification defines two
such values:

* access_token: An access token as defined in [RFC6749],
Section 1.4

* refresh_token: A refresh token as defined in [RFC6749],
Section 1.5

Specific implementations, profiles, and extensions of this
specification MAY define other values for this parameter
using the registry defined in Section 4.1.2.

The client also includes its authentication credentials as described
in Section 2.3. of [RFC6749].

Lodderstedt, et al. Standards Track [Page 4]

350 RFC 7009: OAuth 2.0 Token Revocation

RFC 7009 Token Revocation August 2013

For example, a client may request the revocation of a refresh token
with the following request:

POST /revoke HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded
Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

token=45ghiukldjahdnhzdauz&token_type_hint=refresh_token

The authorization server first validates the client credentials (in
case of a confidential client) and then verifies whether the token
was issued to the client making the revocation request. If this
validation fails, the request is refused and the client is informed
of the error by the authorization server as described below.

In the next step, the authorization server invalidates the token.
The invalidation takes place immediately, and the token cannot be
used again after the revocation. In practice, there could be a
propagation delay, for example, in which some servers know about the
invalidation while others do not. Implementations should minimize
that window, and clients must not try to use the token after receipt
of an HTTP 200 response from the server.

Depending on the authorization server's revocation policy, the
revocation of a particular token may cause the revocation of related
tokens and the underlying authorization grant. If the particular
token is a refresh token and the authorization server supports the
revocation of access tokens, then the authorization server SHOULD
also invalidate all access tokens based on the same authorization
grant (see Implementation Note). If the token passed to the request
is an access token, the server MAY revoke the respective refresh
token as well.

Note: A client compliant with [RFC6749] must be prepared to handle
unexpected token invalidation at any time. Independent of the
revocation mechanism specified in this document, resource owners may
revoke authorization grants, or the authorization server may
invalidate tokens in order to mitigate security threats. Thus,
having different server policies with respect to cascading the
revocation of tokens should not pose interoperability problems.

2.2. Revocation Response

The authorization server responds with HTTP status code 200 if the
token has been revoked successfully or if the client submitted an
invalid token.

Lodderstedt, et al. Standards Track [Page 5]

RFC 7009: OAuth 2.0 Token Revocation 351

RFC 7009 Token Revocation August 2013

Note: invalid tokens do not cause an error response since the client
cannot handle such an error in a reasonable way. Moreover, the
purpose of the revocation request, invalidating the particular token,
is already achieved.

The content of the response body is ignored by the client as all
necessary information is conveyed in the response code.

An invalid token type hint value is ignored by the authorization
server and does not influence the revocation response.

2.2.1. Error Response

The error presentation conforms to the definition in Section 5.2 of
[RFC6749]. The following additional error code is defined for the
token revocation endpoint:

unsupported_token_type: The authorization server does not support
the revocation of the presented token type. That is, the
client tried to revoke an access token on a server not
supporting this feature.

If the server responds with HTTP status code 503, the client must
assume the token still exists and may retry after a reasonable delay.
The server may include a "Retry-After" header in the response to
indicate how long the service is expected to be unavailable to the
requesting client.

2.3. Cross-Origin Support

The revocation endpoint MAY support Cross-Origin Resource Sharing
(CORS) [W3C.WD-cors-20120403] if it is aimed at use in combination
with user-agent-based applications.

In addition, for interoperability with legacy user-agents, it MAY
also offer JSONP (Remote JSON - JSONP) [jsonp] by allowing GET
requests with an additional parameter:

callback OPTIONAL. The qualified name of a JavaScript function.

For example, a client may request the revocation of an access token
with the following request (line breaks are for display purposes
only):

https://example.com/revoke?token=agabcdefddddafdd&
callback=package.myCallback

Lodderstedt, et al. Standards Track [Page 6]

352 RFC 7009: OAuth 2.0 Token Revocation

RFC 7009 Token Revocation August 2013

Successful response:

package.myCallback();

Error response:

package.myCallback({"error":"unsupported_token_type"});

Clients should be aware that when relying on JSONP, a malicious
revocation endpoint may attempt to inject malicious code into the
client.

3. Implementation Note

OAuth 2.0 allows deployment flexibility with respect to the style of
access tokens. The access tokens may be self-contained so that a
resource server needs no further interaction with an authorization
server issuing these tokens to perform an authorization decision of
the client requesting access to a protected resource. A system
design may, however, instead use access tokens that are handles
referring to authorization data stored at the authorization server.
This consequently requires a resource server to issue a request to
the respective authorization server to retrieve the content of the
access token every time a client presents an access token.

While these are not the only options, they illustrate the
implications for revocation. In the latter case, the authorization
server is able to revoke an access token previously issued to a
client when the resource server relays a received access token. In
the former case, some (currently non-standardized) backend
interaction between the authorization server and the resource server
may be used when immediate access token revocation is desired.
Another design alternative is to issue short-lived access tokens,
which can be refreshed at any time using the corresponding refresh
tokens. This allows the authorization server to impose a limit on
the time revoked when access tokens are in use.

Which approach of token revocation is chosen will depend on the
overall system design and on the application service provider's risk
analysis. The cost of revocation in terms of required state and
communication overhead is ultimately the result of the desired
security properties.

Lodderstedt, et al. Standards Track [Page 7]

RFC 7009: OAuth 2.0 Token Revocation 353

RFC 7009 Token Revocation August 2013

4. IANA Considerations

This specification registers an error value in the "OAuth Extensions
Error Registry" and establishes the "OAuth Token Type Hints"
registry.

4.1. OAuth Extensions Error Registration

This specification registers the following error value in the "OAuth
Extensions Error Registry" defined in [RFC6749].

4.1.1. The "unsupported_token_type" Error Value

Error name: unsupported_token_type

Error Usage Location: Revocation endpoint error response

Related Protocol Extension: Token Revocation Endpoint

Change controller: IETF

Specification document(s): [RFC7009]

4.1.2. OAuth Token Type Hints Registry

This specification establishes the "OAuth Token Type Hints" registry.
Possible values of the parameter "token_type_hint" (see Section 2.1)
are registered with a Specification Required ([RFC5226]) after a two-
week review period on the oauth-ext-review@ietf.org mailing list, on
the advice of one or more Designated Experts. However, to allow for
the allocation of values prior to publication, the Designated
Expert(s) may approve registration once they are satisfied that such
a specification will be published. Registration requests must be
sent to the oauth-ext-review@ietf.org mailing list for review and
comment, with an appropriate subject (e.g., "Request for parameter:
example"). Within the review period, the Designated Expert(s) will
either approve or deny the registration request, communicating this
decision to the review list and IANA. Denials should include an
explanation and, if applicable, suggestions as to how to make the
request successful. IANA must only accept registry updates from the
Designated Expert(s) and should direct all requests for registration
to the review mailing list.

Lodderstedt, et al. Standards Track [Page 8]

354 RFC 7009: OAuth 2.0 Token Revocation

RFC 7009 Token Revocation August 2013

4.1.2.1. Registration Template

Hint Value: The additional value, which can be used to indicate a
certain token type to the authorization server.

Change controller: For Standards Track RFCs, state "IETF". For
others, give the name of the responsible party. Other details
(e.g., postal address, email address, and home page URI) may also
be included.

Specification document(s): Reference to the document(s) that
specifies the type, preferably including a URI that can be used to
retrieve a copy of the document(s). An indication of the relevant
sections may also be included but is not required.

4.1.2.2. Initial Registry Contents

The OAuth Token Type Hint registry's initial contents are as follows.

+---------------+-------------------+-----------+
| Hint Value | Change Controller | Reference |
+---------------+-------------------+-----------+
| access_token | IETF | [RFC7009] |
| refresh_token | IETF | [RFC7009] |
+---------------+-------------------+-----------+

Table 1: OAuth Token Type Hints initial registry contents

5. Security Considerations

If the authorization server does not support access token revocation,
access tokens will not be immediately invalidated when the
corresponding refresh token is revoked. Deployments must take this
into account when conducting their security risk analysis.

Cleaning up tokens using revocation contributes to overall security
and privacy since it reduces the likelihood for abuse of abandoned
tokens. This specification in general does not intend to provide
countermeasures against token theft and abuse. For a discussion of
respective threats and countermeasures, consult the security
considerations given in Section 10 of the OAuth core specification
[RFC6749] and the OAuth threat model document [RFC6819].

Malicious clients could attempt to use the new endpoint to launch
denial-of-service attacks on the authorization server. Appropriate
countermeasures, which should be in place for the token endpoint as
well, MUST be applied to the revocation endpoint (see [RFC6819],
Section 4.4.1.11). Specifically, invalid token type hints may

Lodderstedt, et al. Standards Track [Page 9]

RFC 7009: OAuth 2.0 Token Revocation 355

RFC 7009 Token Revocation August 2013

misguide the authorization server and cause additional database
lookups. Care MUST be taken to prevent malicious clients from
exploiting this feature to launch denial-of-service attacks.

A malicious client may attempt to guess valid tokens on this endpoint
by making revocation requests against potential token strings.
According to this specification, a client's request must contain a
valid client_id, in the case of a public client, or valid client
credentials, in the case of a confidential client. The token being
revoked must also belong to the requesting client. If an attacker is
able to successfully guess a public client's client_id and one of
their tokens, or a private client's credentials and one of their
tokens, they could do much worse damage by using the token elsewhere
than by revoking it. If they chose to revoke the token, the
legitimate client will lose its authorization grant and will need to
prompt the user again. No further damage is done and the guessed
token is now worthless.

Since the revocation endpoint is handling security credentials,
clients need to obtain its location from a trustworthy source only.
Otherwise, an attacker could capture valid security tokens by
utilizing a counterfeit revocation endpoint. Moreover, in order to
detect counterfeit revocation endpoints, clients MUST authenticate
the revocation endpoint (certificate validation, etc.).

6. Acknowledgements

We would like to thank Peter Mauritius, Amanda Anganes, Mark Wubben,
Hannes Tschofenig, Michiel de Jong, Doug Foiles, Paul Madsen, George
Fletcher, Sebastian Ebling, Christian Stuebner, Brian Campbell, Igor
Faynberg, Lukas Rosenstock, and Justin Richer for their valuable
feedback.

7. References

7.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", BCP 26, RFC 5226,
May 2008.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.

Lodderstedt, et al. Standards Track [Page 10]

356 RFC 7009: OAuth 2.0 Token Revocation

RFC 7009 Token Revocation August 2013

[RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework",
RFC 6749, October 2012.

7.2. Informative References

[RFC6819] Lodderstedt, T., McGloin, M., and P. Hunt, "OAuth 2.0
Threat Model and Security Considerations", RFC 6819,
January 2013.

[W3C.WD-cors-20120403]
Kesteren, A., "Cross-Origin Resource Sharing", World Wide
Web Consortium LastCall WD-cors-20120403, April 2012,
.

[jsonp] Ippolito, B., "Remote JSON - JSONP", December 2005,
.

Authors' Addresses

Torsten Lodderstedt (editor)
Deutsche Telekom AG

EMail: torsten@lodderstedt.net

Stefanie Dronia

EMail: sdronia@gmx.de

Marius Scurtescu
Google

EMail: mscurtescu@google.com

Lodderstedt, et al. Standards Track [Page 11]

RFC 7009: OAuth 2.0 Token Revocation 357

358 RFC 7009: OAuth 2.0 Token Revocation

Chapter 10

RFC 7662: OAuth 2.0 Token
Introspection

The Token Introspection spec defines a mechanism for
resource servers to obtain information about access
tokens. Without this spec, resource servers have to have a
bespoke way of checking whether access tokens are valid,
and finding out information needed in order to process
the request. This typically would occur by having the
resource server and authorization server share a
database, or by agreeing on an access token format such
as JWT and sharing encryption or signing keys.

With this spec, resource servers can check the validity of
access tokens and find out other information with an
HTTP API call, leading to better separation of concerns
between the authorization server and any resource
servers.

RFC 7662: OAuth 2.0 Token Introspection 359

360 RFC 7662: OAuth 2.0 Token Introspection

Internet Engineering Task Force (IETF) J. Richer, Ed.
Request for Comments: 7662 October 2015
Category: Standards Track
ISSN: 2070-1721

OAuth 2.0 Token Introspection

Abstract

This specification defines a method for a protected resource to query
an OAuth 2.0 authorization server to determine the active state of an
OAuth 2.0 token and to determine meta-information about this token.
OAuth 2.0 deployments can use this method to convey information about
the authorization context of the token from the authorization server
to the protected resource.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.

Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7662.

Copyright Notice

Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Richer Standards Track [Page 1]

RFC 7662: OAuth 2.0 Token Introspection 361

RFC 7662 OAuth Introspection October 2015

Table of Contents

1. Introduction . 2
1.1. Notational Conventions 3
1.2. Terminology . 3

2. Introspection Endpoint 3
2.1. Introspection Request 4
2.2. Introspection Response 6
2.3. Error Response . 8

3. IANA Considerations . 9
3.1. OAuth Token Introspection Response Registry 9
3.1.1. Registration Template 10
3.1.2. Initial Registry Contents 10

4. Security Considerations 12
5. Privacy Considerations 14
6. References . 15

6.1. Normative References 15
6.2. Informative References 16

Appendix A. Use with Proof-of-Possession Tokens 17
Acknowledgements . 17
Author's Address . 17

1. Introduction

In OAuth 2.0 [RFC6749], the contents of tokens are opaque to clients.
This means that the client does not need to know anything about the
content or structure of the token itself, if there is any. However,
there is still a large amount of metadata that may be attached to a
token, such as its current validity, approved scopes, and information
about the context in which the token was issued. These pieces of
information are often vital to protected resources making
authorization decisions based on the tokens being presented. Since
OAuth 2.0 does not define a protocol for the resource server to learn
meta-information about a token that it has received from an
authorization server, several different approaches have been
developed to bridge this gap. These include using structured token
formats such as JWT [RFC7519] or proprietary inter-service
communication mechanisms (such as shared databases and protected
enterprise service buses) that convey token information.

This specification defines a protocol that allows authorized
protected resources to query the authorization server to determine
the set of metadata for a given token that was presented to them by
an OAuth 2.0 client. This metadata includes whether or not the token
is currently active (or if it has expired or otherwise been revoked),
what rights of access the token carries (usually conveyed through
OAuth 2.0 scopes), and the authorization context in which the token
was granted (including who authorized the token and which client it

Richer Standards Track [Page 2]

362 RFC 7662: OAuth 2.0 Token Introspection

RFC 7662 OAuth Introspection October 2015

was issued to). Token introspection allows a protected resource to
query this information regardless of whether or not it is carried in
the token itself, allowing this method to be used along with or
independently of structured token values. Additionally, a protected
resource can use the mechanism described in this specification to
introspect the token in a particular authorization decision context
and ascertain the relevant metadata about the token to make this
authorization decision appropriately.

1.1. Notational Conventions

The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT',
'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED', 'MAY', and
'OPTIONAL' in this document are to be interpreted as described in
[RFC2119].

Unless otherwise noted, all the protocol parameter names and values
are case sensitive.

1.2. Terminology

This section defines the terminology used by this specification.
This section is a normative portion of this specification, imposing
requirements upon implementations.

This specification uses the terms "access token", "authorization
endpoint", "authorization grant", "authorization server", "client",
"client identifier", "protected resource", "refresh token", "resource
owner", "resource server", and "token endpoint" defined by OAuth 2.0
[RFC6749], and the terms "claim names" and "claim values" defined by
JSON Web Token (JWT) [RFC7519].

This specification defines the following terms:

Token Introspection
The act of inquiring about the current state of an OAuth 2.0 token
through use of the network protocol defined in this document.

Introspection Endpoint
The OAuth 2.0 endpoint through which the token introspection
operation is accomplished.

2. Introspection Endpoint

The introspection endpoint is an OAuth 2.0 endpoint that takes a
parameter representing an OAuth 2.0 token and returns a JSON
[RFC7159] document representing the meta information surrounding the
token, including whether this token is currently active. The

Richer Standards Track [Page 3]

RFC 7662: OAuth 2.0 Token Introspection 363

RFC 7662 OAuth Introspection October 2015

definition of an active token is dependent upon the authorization
server, but this is commonly a token that has been issued by this
authorization server, is not expired, has not been revoked, and is
valid for use at the protected resource making the introspection
call.

The introspection endpoint MUST be protected by a transport-layer
security mechanism as described in Section 4. The means by which the
protected resource discovers the location of the introspection
endpoint are outside the scope of this specification.

2.1. Introspection Request

The protected resource calls the introspection endpoint using an HTTP
POST [RFC7231] request with parameters sent as
"application/x-www-form-urlencoded" data as defined in
[W3C.REC-html5-20141028]. The protected resource sends a parameter
representing the token along with optional parameters representing
additional context that is known by the protected resource to aid the
authorization server in its response.

token
REQUIRED. The string value of the token. For access tokens, this
is the "access_token" value returned from the token endpoint
defined in OAuth 2.0 [RFC6749], Section 5.1. For refresh tokens,
this is the "refresh_token" value returned from the token endpoint
as defined in OAuth 2.0 [RFC6749], Section 5.1. Other token types
are outside the scope of this specification.

token_type_hint
OPTIONAL. A hint about the type of the token submitted for
introspection. The protected resource MAY pass this parameter to
help the authorization server optimize the token lookup. If the
server is unable to locate the token using the given hint, it MUST
extend its search across all of its supported token types. An
authorization server MAY ignore this parameter, particularly if it
is able to detect the token type automatically. Values for this
field are defined in the "OAuth Token Type Hints" registry defined
in OAuth Token Revocation [RFC7009].

The introspection endpoint MAY accept other OPTIONAL parameters to
provide further context to the query. For instance, an authorization
server may desire to know the IP address of the client accessing the
protected resource to determine if the correct client is likely to be
presenting the token. The definition of this or any other parameters
are outside the scope of this specification, to be defined by service
documentation or extensions to this specification. If the
authorization server is unable to determine the state of the token

Richer Standards Track [Page 4]

364 RFC 7662: OAuth 2.0 Token Introspection

RFC 7662 OAuth Introspection October 2015

without additional information, it SHOULD return an introspection
response indicating the token is not active as described in
Section 2.2.

To prevent token scanning attacks, the endpoint MUST also require
some form of authorization to access this endpoint, such as client
authentication as described in OAuth 2.0 [RFC6749] or a separate
OAuth 2.0 access token such as the bearer token described in OAuth
2.0 Bearer Token Usage [RFC6750]. The methods of managing and
validating these authentication credentials are out of scope of this
specification.

For example, the following shows a protected resource calling the
token introspection endpoint to query about an OAuth 2.0 bearer
token. The protected resource is using a separate OAuth 2.0 bearer
token to authorize this call.

The following is a non-normative example request:

POST /introspect HTTP/1.1
Host: server.example.com
Accept: application/json
Content-Type: application/x-www-form-urlencoded
Authorization: Bearer 23410913-abewfq.123483

token=2YotnFZFEjr1zCsicMWpAA

In this example, the protected resource uses a client identifier and
client secret to authenticate itself to the introspection endpoint.
The protected resource also sends a token type hint indicating that
it is inquiring about an access token.

The following is a non-normative example request:

POST /introspect HTTP/1.1
Host: server.example.com
Accept: application/json
Content-Type: application/x-www-form-urlencoded
Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

token=mF_9.B5f-4.1JqM&token_type_hint=access_token

Richer Standards Track [Page 5]

RFC 7662: OAuth 2.0 Token Introspection 365

RFC 7662 OAuth Introspection October 2015

2.2. Introspection Response

The server responds with a JSON object [RFC7159] in "application/
json" format with the following top-level members.

active
REQUIRED. Boolean indicator of whether or not the presented token
is currently active. The specifics of a token's "active" state
will vary depending on the implementation of the authorization
server and the information it keeps about its tokens, but a "true"
value return for the "active" property will generally indicate
that a given token has been issued by this authorization server,
has not been revoked by the resource owner, and is within its
given time window of validity (e.g., after its issuance time and
before its expiration time). See Section 4 for information on
implementation of such checks.

scope
OPTIONAL. A JSON string containing a space-separated list of
scopes associated with this token, in the format described in
Section 3.3 of OAuth 2.0 [RFC6749].

client_id
OPTIONAL. Client identifier for the OAuth 2.0 client that
requested this token.

username
OPTIONAL. Human-readable identifier for the resource owner who
authorized this token.

token_type
OPTIONAL. Type of the token as defined in Section 5.1 of OAuth
2.0 [RFC6749].

exp
OPTIONAL. Integer timestamp, measured in the number of seconds
since January 1 1970 UTC, indicating when this token will expire,
as defined in JWT [RFC7519].

iat
OPTIONAL. Integer timestamp, measured in the number of seconds
since January 1 1970 UTC, indicating when this token was
originally issued, as defined in JWT [RFC7519].

nbf
OPTIONAL. Integer timestamp, measured in the number of seconds
since January 1 1970 UTC, indicating when this token is not to be
used before, as defined in JWT [RFC7519].

Richer Standards Track [Page 6]

366 RFC 7662: OAuth 2.0 Token Introspection

RFC 7662 OAuth Introspection October 2015

sub
OPTIONAL. Subject of the token, as defined in JWT [RFC7519].
Usually a machine-readable identifier of the resource owner who
authorized this token.

aud
OPTIONAL. Service-specific string identifier or list of string
identifiers representing the intended audience for this token, as
defined in JWT [RFC7519].

iss
OPTIONAL. String representing the issuer of this token, as
defined in JWT [RFC7519].

jti
OPTIONAL. String identifier for the token, as defined in JWT
[RFC7519].

Specific implementations MAY extend this structure with their own
service-specific response names as top-level members of this JSON
object. Response names intended to be used across domains MUST be
registered in the "OAuth Token Introspection Response" registry
defined in Section 3.1.

The authorization server MAY respond differently to different
protected resources making the same request. For instance, an
authorization server MAY limit which scopes from a given token are
returned for each protected resource to prevent a protected resource
from learning more about the larger network than is necessary for its
operation.

The response MAY be cached by the protected resource to improve
performance and reduce load on the introspection endpoint, but at the
cost of liveness of the information used by the protected resource to
make authorization decisions. See Section 4 for more information
regarding the trade off when the response is cached.

Richer Standards Track [Page 7]

RFC 7662: OAuth 2.0 Token Introspection 367

RFC 7662 OAuth Introspection October 2015

For example, the following response contains a set of information
about an active token:

The following is a non-normative example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"active": true,
"client_id": "l238j323ds-23ij4",
"username": "jdoe",
"scope": "read write dolphin",
"sub": "Z5O3upPC88QrAjx00dis",
"aud": "https://protected.example.net/resource",
"iss": "https://server.example.com/",
"exp": 1419356238,
"iat": 1419350238,
"extension_field": "twenty-seven"
}

If the introspection call is properly authorized but the token is not
active, does not exist on this server, or the protected resource is
not allowed to introspect this particular token, then the
authorization server MUST return an introspection response with the
"active" field set to "false". Note that to avoid disclosing too
much of the authorization server's state to a third party, the
authorization server SHOULD NOT include any additional information
about an inactive token, including why the token is inactive.

The following is a non-normative example response for a token that
has been revoked or is otherwise invalid:

HTTP/1.1 200 OK
Content-Type: application/json

{
"active": false
}

2.3. Error Response

If the protected resource uses OAuth 2.0 client credentials to
authenticate to the introspection endpoint and its credentials are
invalid, the authorization server responds with an HTTP 401
(Unauthorized) as described in Section 5.2 of OAuth 2.0 [RFC6749].

Richer Standards Track [Page 8]

368 RFC 7662: OAuth 2.0 Token Introspection

RFC 7662 OAuth Introspection October 2015

If the protected resource uses an OAuth 2.0 bearer token to authorize
its call to the introspection endpoint and the token used for
authorization does not contain sufficient privileges or is otherwise
invalid for this request, the authorization server responds with an
HTTP 401 code as described in Section 3 of OAuth 2.0 Bearer Token
Usage [RFC6750].

Note that a properly formed and authorized query for an inactive or
otherwise invalid token (or a token the protected resource is not
allowed to know about) is not considered an error response by this
specification. In these cases, the authorization server MUST instead
respond with an introspection response with the "active" field set to
"false" as described in Section 2.2.

3. IANA Considerations

3.1. OAuth Token Introspection Response Registry

This specification establishes the "OAuth Token Introspection
Response" registry.

OAuth registration client metadata names and descriptions are
registered by Specification Required [RFC5226] after a two-week
review period on the oauth-ext-review@ietf.org mailing list, on the
advice of one or more Designated Experts. However, to allow for the
allocation of names prior to publication, the Designated Expert(s)
may approve registration once they are satisfied that such a
specification will be published.

Registration requests sent to the mailing list for review should use
an appropriate subject (e.g., "Request to register OAuth Token
Introspection Response name: example").

Within the review period, the Designated Expert(s) will either
approve or deny the registration request, communicating this decision
to the review list and IANA. Denials should include an explanation
and, if applicable, suggestions as to how to make the request
successful.

IANA must only accept registry updates from the Designated Expert(s)
and should direct all requests for registration to the review mailing
list.

Richer Standards Track [Page 9]

RFC 7662: OAuth 2.0 Token Introspection 369

RFC 7662 OAuth Introspection October 2015

3.1.1. Registration Template

Name:
The name requested (e.g., "example"). This name is case
sensitive. Names that match other registered names in a case
insensitive manner SHOULD NOT be accepted. Names that match
claims registered in the "JSON Web Token Claims" registry
established by [RFC7519] SHOULD have comparable definitions and
semantics.

Description:
Brief description of the metadata value (e.g., "Example
description").

Change controller:
For Standards Track RFCs, state "IESG". For other documents, give
the name of the responsible party. Other details (e.g., postal
address, email address, home page URI) may also be included.

Specification document(s):
Reference to the document(s) that specify the token endpoint
authorization method, preferably including a URI that can be used
to retrieve a copy of the document(s). An indication of the
relevant sections may also be included but is not required.

3.1.2. Initial Registry Contents

The initial contents of the "OAuth Token Introspection Response"
registry are as follows:

o Name: "active"
o Description: Token active status
o Change Controller: IESG
o Specification Document(s): Section 2.2 of RFC 7662 (this

document).

o Name: "username"
o Description: User identifier of the resource owner
o Change Controller: IESG
o Specification Document(s): Section 2.2 of RFC 7662 (this

document).

o Name: "client_id"
o Description: Client identifier of the client
o Change Controller: IESG
o Specification Document(s): Section 2.2 of RFC 7662 (this

document).

Richer Standards Track [Page 10]

370 RFC 7662: OAuth 2.0 Token Introspection

RFC 7662 OAuth Introspection October 2015

o Name: "scope"
o Description: Authorized scopes of the token
o Change Controller: IESG
o Specification Document(s): Section 2.2 of RFC 7662 (this

document).

o Name: "token_type"
o Description: Type of the token
o Change Controller: IESG
o Specification Document(s): Section 2.2 of RFC 7662 (this

document).

o Name: "exp"
o Description: Expiration timestamp of the token
o Change Controller: IESG
o Specification Document(s): Section 2.2 of RFC 7662 (this

document).

o Name: "iat"
o Description: Issuance timestamp of the token
o Change Controller: IESG
o Specification Document(s): Section 2.2 of RFC 7662 (this

document).

o Name: "nbf"
o Description: Timestamp before which the token is not valid
o Change Controller: IESG
o Specification Document(s): Section 2.2 of RFC 7662 (this

document).

o Name: "sub"
o Description: Subject of the token
o Change Controller: IESG
o Specification Document(s): Section 2.2 of RFC 7662 (this

document).

o Name: "aud"
o Description: Audience of the token
o Change Controller: IESG
o Specification Document(s): Section 2.2 of RFC 7662 (this

document).

o Name: "iss"
o Description: Issuer of the token
o Change Controller: IESG
o Specification Document(s): Section 2.2 of RFC 7662 (this

document).

Richer Standards Track [Page 11]

RFC 7662: OAuth 2.0 Token Introspection 371

RFC 7662 OAuth Introspection October 2015

o Name: "jti"
o Description: Unique identifier of the token
o Change Controller: IESG
o Specification Document(s): Section 2.2 of RFC 7662 (this

document).

4. Security Considerations

Since there are many different and valid ways to implement an OAuth
2.0 system, there are consequently many ways for an authorization
server to determine whether or not a token is currently "active".
However, since resource servers using token introspection rely on the
authorization server to determine the state of a token, the
authorization server MUST perform all applicable checks against a
token's state. For instance, these tests include the following:

o If the token can expire, the authorization server MUST determine
whether or not the token has expired.

o If the token can be issued before it is able to be used, the
authorization server MUST determine whether or not a token's valid
period has started yet.

o If the token can be revoked after it was issued, the authorization
server MUST determine whether or not such a revocation has taken
place.

o If the token has been signed, the authorization server MUST
validate the signature.

o If the token can be used only at certain resource servers, the
authorization server MUST determine whether or not the token can
be used at the resource server making the introspection call.

If an authorization server fails to perform any applicable check, the
resource server could make an erroneous security decision based on
that response. Note that not all of these checks will be applicable
to all OAuth 2.0 deployments and it is up to the authorization server
to determine which of these checks (and any other checks) apply.

If left unprotected and un-throttled, the introspection endpoint
could present a means for an attacker to poll a series of possible
token values, fishing for a valid token. To prevent this, the
authorization server MUST require authentication of protected
resources that need to access the introspection endpoint and SHOULD
require protected resources to be specifically authorized to call the
introspection endpoint. The specifics of such authentication
credentials are out of scope of this specification, but commonly
these credentials could take the form of any valid client
authentication mechanism used with the token endpoint, an OAuth 2.0
access token, or other HTTP authorization or authentication
mechanism. A single piece of software acting as both a client and a

Richer Standards Track [Page 12]

372 RFC 7662: OAuth 2.0 Token Introspection

RFC 7662 OAuth Introspection October 2015

protected resource MAY reuse the same credentials between the token
endpoint and the introspection endpoint, though doing so potentially
conflates the activities of the client and protected resource
portions of the software and the authorization server MAY require
separate credentials for each mode.

Since the introspection endpoint takes in OAuth 2.0 tokens as
parameters and responds with information used to make authorization
decisions, the server MUST support Transport Layer Security (TLS) 1.2
[RFC5246] and MAY support additional transport-layer mechanisms
meeting its security requirements. When using TLS, the client or
protected resource MUST perform a TLS/SSL server certificate check,
as specified in [RFC6125]. Implementation security considerations
can be found in Recommendations for Secure Use of TLS and DTLS
[BCP195].

To prevent the values of access tokens from leaking into server-side
logs via query parameters, an authorization server offering token
introspection MAY disallow the use of HTTP GET on the introspection
endpoint and instead require the HTTP POST method to be used at the
introspection endpoint.

To avoid disclosing the internal state of the authorization server,
an introspection response for an inactive token SHOULD NOT contain
any additional claims beyond the required "active" claim (with its
value set to "false").

Since a protected resource MAY cache the response of the
introspection endpoint, designers of an OAuth 2.0 system using this
protocol MUST consider the performance and security trade-offs
inherent in caching security information such as this. A less
aggressive cache with a short timeout will provide the protected
resource with more up-to-date information (due to it needing to query
the introspection endpoint more often) at the cost of increased
network traffic and load on the introspection endpoint. A more
aggressive cache with a longer duration will minimize network traffic
and load on the introspection endpoint, but at the risk of stale
information about the token. For example, the token may be revoked
while the protected resource is relying on the value of the cached
response to make authorization decisions. This creates a window
during which a revoked token could be used at the protected resource.
Consequently, an acceptable cache validity duration needs to be
carefully considered given the concerns and sensitivities of the
protected resource being accessed and the likelihood of a token being
revoked or invalidated in the interim period. Highly sensitive
environments can opt to disable caching entirely on the protected
resource to eliminate the risk of stale cached information entirely,
again at the cost of increased network traffic and server load. If

Richer Standards Track [Page 13]

RFC 7662: OAuth 2.0 Token Introspection 373

RFC 7662 OAuth Introspection October 2015

the response contains the "exp" parameter (expiration), the response
MUST NOT be cached beyond the time indicated therein.

An authorization server offering token introspection must be able to
understand the token values being presented to it during this call.
The exact means by which this happens is an implementation detail and
is outside the scope of this specification. For unstructured tokens,
this could take the form of a simple server-side database query
against a data store containing the context information for the
token. For structured tokens, this could take the form of the server
parsing the token, validating its signature or other protection
mechanisms, and returning the information contained in the token back
to the protected resource (allowing the protected resource to be
unaware of the token's contents, much like the client). Note that
for tokens carrying encrypted information that is needed during the
introspection process, the authorization server must be able to
decrypt and validate the token to access this information. Also note
that in cases where the authorization server stores no information
about the token and has no means of accessing information about the
token by parsing the token itself, it cannot likely offer an
introspection service.

5. Privacy Considerations

The introspection response may contain privacy-sensitive information
such as user identifiers for resource owners. When this is the case,
measures MUST be taken to prevent disclosure of this information to
unintended parties. One method is to transmit user identifiers as
opaque service-specific strings, potentially returning different
identifiers to each protected resource.

If the protected resource sends additional information about the
client's request to the authorization server (such as the client's IP
address) using an extension of this specification, such information
could have additional privacy considerations that the extension
should detail. However, the nature and implications of such
extensions are outside the scope of this specification.

Omitting privacy-sensitive information from an introspection response
is the simplest way of minimizing privacy issues.

Richer Standards Track [Page 14]

374 RFC 7662: OAuth 2.0 Token Introspection

RFC 7662 OAuth Introspection October 2015

6. References

6.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
.

[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", BCP 26, RFC 5226,
DOI 10.17487/RFC5226, May 2008,
.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246,
DOI 10.17487/RFC5246, August 2008,
.

[RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
Verification of Domain-Based Application Service Identity
within Internet Public Key Infrastructure Using X.509
(PKIX) Certificates in the Context of Transport Layer
Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
2011, .

[RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,
.

[RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
Framework: Bearer Token Usage", RFC 6750,
DOI 10.17487/RFC6750, October 2012,
.

[RFC7009] Lodderstedt, T., Ed., Dronia, S., and M. Scurtescu, "OAuth
2.0 Token Revocation", RFC 7009, DOI 10.17487/RFC7009,
August 2013, .

[RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
2014, .

[RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
DOI 10.17487/RFC7231, June 2014,
.

Richer Standards Track [Page 15]

RFC 7662: OAuth 2.0 Token Introspection 375

RFC 7662 OAuth Introspection October 2015

[RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
(JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
.

[W3C.REC-html5-20141028]
Hickson, I., Berjon, R., Faulkner, S., Leithead, T.,
Navara, E., 0'Connor, E., and S. Pfeiffer, "HTML5", World
Wide Web Consortium Recommendation
REC-html5-20141028, October 2014,
.

6.2. Informative References

[BCP195] Sheffer, Y., Holz, R., and P. Saint-Andre,
"Recommendations for Secure Use of Transport Layer
Security (TLS) and Datagram Transport Layer Security
(DTLS)", BCP 195, RFC 7525, May 2015,
.

Richer Standards Track [Page 16]

376 RFC 7662: OAuth 2.0 Token Introspection

RFC 7662 OAuth Introspection October 2015

Appendix A. Use with Proof-of-Possession Tokens

With bearer tokens such as those defined by OAuth 2.0 Bearer Token
Usage [RFC6750], the protected resource will have in its possession
the entire secret portion of the token for submission to the
introspection service. However, for proof-of-possession style
tokens, the protected resource will have only a token identifier used
during the request, along with the cryptographic signature on the
request. To validate the signature on the request, the protected
resource could be able to submit the token identifier to the
authorization server's introspection endpoint to obtain the necessary
key information needed for that token. The details of this usage are
outside the scope of this specification and will be defined in an
extension to this specification in concert with the definition of
proof-of-possession tokens.

Acknowledgements

Thanks to the OAuth Working Group and the User Managed Access Working
Group for feedback and review of this document, and to the various
implementors of both the client and server components of this
specification. In particular, the author would like to thank Amanda
Anganes, John Bradley, Thomas Broyer, Brian Campbell, George
Fletcher, Paul Freemantle, Thomas Hardjono, Eve Maler, Josh Mandel,
Steve Moore, Mike Schwartz, Prabath Siriwardena, Sarah Squire, and
Hannes Tschofennig.

Author's Address

Justin Richer (editor)

Email: ietf@justin.richer.org

Richer Standards Track [Page 17]

RFC 7662: OAuth 2.0 Token Introspection 377

378 RFC 7662: OAuth 2.0 Token Introspection

Chapter 11

RFC 8414: OAuth 2.0
Authorization Server Metadata

The Authorization Server Metadata spec (also known as
OAuth Discovery) defines an endpoint clients can use to
look up the information needed to interact with a
particular OAuth server. This includes things like finding
the authorization and token endpoints, listing the
supported scopes and response types, and providing
access token signing keys to resource servers.

RFC 8414: OAuth 2.0 Authorization Server Metadata 379

380 RFC 8414: OAuth 2.0 Authorization Server Metadata

Internet Engineering Task Force (IETF) M. Jones
Request for Comments: 8414 Microsoft
Category: Standards Track N. Sakimura
ISSN: 2070-1721 NRI

J. Bradley
Yubico

June 2018

OAuth 2.0 Authorization Server Metadata

Abstract

This specification defines a metadata format that an OAuth 2.0 client
can use to obtain the information needed to interact with an
OAuth 2.0 authorization server, including its endpoint locations and
authorization server capabilities.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8414.

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Jones, et al. Standards Track [Page 1]

RFC 8414: OAuth 2.0 Authorization Server Metadata 381

RFC 8414 OAuth 2.0 Authorization Server Metadata June 2018

Table of Contents

1. Introduction ..2
1.1. Requirements Notation and Conventions3
1.2. Terminology ..3

2. Authorization Server Metadata4
2.1. Signed Authorization Server Metadata8

3. Obtaining Authorization Server Metadata8
3.1. Authorization Server Metadata Request9
3.2. Authorization Server Metadata Response10
3.3. Authorization Server Metadata Validation11

4. String Operations ..11
5. Compatibility Notes ..11
6. Security Considerations ..12

6.1. TLS Requirements ..12
6.2. Impersonation Attacks12
6.3. Publishing Metadata in a Standard Format13
6.4. Protected Resources13

7. IANA Considerations ..14
7.1. OAuth Authorization Server Metadata Registry14

7.1.1. Registration Template15
7.1.2. Initial Registry Contents16

7.2. Updated Registration Instructions19
7.3. Well-Known URI Registry19

7.3.1. Registry Contents19
8. References ...20

8.1. Normative References20
8.2. Informative References22

Acknowledgements ..23
Authors' Addresses ..23

1. Introduction

This specification generalizes the metadata format defined by "OpenID
Connect Discovery 1.0" [OpenID.Discovery] in a way that is compatible
with OpenID Connect Discovery while being applicable to a wider set
of OAuth 2.0 use cases. This is intentionally parallel to the way
that "OAuth 2.0 Dynamic Client Registration Protocol" [RFC7591]
generalized the dynamic client registration mechanisms defined by
"OpenID Connect Dynamic Client Registration 1.0"
[OpenID.Registration] in a way that is compatible with it.

The metadata for an authorization server is retrieved from a well-
known location as a JSON [RFC8259] document, which declares its
endpoint locations and authorization server capabilities. This
process is described in Section 3.

Jones, et al. Standards Track [Page 2]

382 RFC 8414: OAuth 2.0 Authorization Server Metadata

RFC 8414 OAuth 2.0 Authorization Server Metadata June 2018

This metadata can be communicated either in a self-asserted fashion
by the server origin via HTTPS or as a set of signed metadata values
represented as claims in a JSON Web Token (JWT) [JWT]. In the JWT
case, the issuer is vouching for the validity of the data about the
authorization server. This is analogous to the role that the
Software Statement plays in OAuth Dynamic Client Registration
[RFC7591].

The means by which the client chooses an authorization server is out
of scope. In some cases, its issuer identifier may be manually
configured into the client. In other cases, it may be dynamically
discovered, for instance, through the use of WebFinger [RFC7033], as
described in Section 2 of "OpenID Connect Discovery 1.0"
[OpenID.Discovery].

1.1. Requirements Notation and Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

All uses of JSON Web Signature (JWS) [JWS] and JSON Web Encryption
(JWE) [JWE] data structures in this specification utilize the JWS
Compact Serialization or the JWE Compact Serialization; the JWS JSON
Serialization and the JWE JSON Serialization are not used.

1.2. Terminology

This specification uses the terms "Access Token", "Authorization
Code", "Authorization Endpoint", "Authorization Grant",
"Authorization Server", "Client", "Client Authentication", "Client
Identifier", "Client Secret", "Grant Type", "Protected Resource",
"Redirection URI", "Refresh Token", "Resource Owner", "Resource
Server", "Response Type", and "Token Endpoint" defined by OAuth 2.0
[RFC6749]; the terms "Claim Name", "Claim Value", and "JSON Web Token
(JWT)" defined by JSON Web Token (JWT) [JWT]; and the term "Response
Mode" defined by "OAuth 2.0 Multiple Response Type Encoding
Practices" [OAuth.Responses].

Jones, et al. Standards Track [Page 3]

RFC 8414: OAuth 2.0 Authorization Server Metadata 383

RFC 8414 OAuth 2.0 Authorization Server Metadata June 2018

2. Authorization Server Metadata

Authorization servers can have metadata describing their
configuration. The following authorization server metadata values
are used by this specification and are registered in the IANA "OAuth
Authorization Server Metadata" registry established in Section 7.1:

issuer
REQUIRED. The authorization server's issuer identifier, which is
a URL that uses the "https" scheme and has no query or fragment
components. Authorization server metadata is published at a
location that is ".well-known" according to RFC 5785 [RFC5785]
derived from this issuer identifier, as described in Section 3.
The issuer identifier is used to prevent authorization server mix-
up attacks, as described in "OAuth 2.0 Mix-Up Mitigation"
[MIX-UP].

authorization_endpoint
URL of the authorization server's authorization endpoint
[RFC6749]. This is REQUIRED unless no grant types are supported
that use the authorization endpoint.

token_endpoint
URL of the authorization server's token endpoint [RFC6749]. This
is REQUIRED unless only the implicit grant type is supported.

jwks_uri
OPTIONAL. URL of the authorization server's JWK Set [JWK]
document. The referenced document contains the signing key(s) the
client uses to validate signatures from the authorization server.
This URL MUST use the "https" scheme. The JWK Set MAY also
contain the server's encryption key or keys, which are used by
clients to encrypt requests to the server. When both signing and
encryption keys are made available, a "use" (public key use)
parameter value is REQUIRED for all keys in the referenced JWK Set
to indicate each key's intended usage.

registration_endpoint
OPTIONAL. URL of the authorization server's OAuth 2.0 Dynamic
Client Registration endpoint [RFC7591].

scopes_supported
RECOMMENDED. JSON array containing a list of the OAuth 2.0
[RFC6749] "scope" values that this authorization server supports.
Servers MAY choose not to advertise some supported scope values
even when this parameter is used.

Jones, et al. Standards Track [Page 4]

384 RFC 8414: OAuth 2.0 Authorization Server Metadata

RFC 8414 OAuth 2.0 Authorization Server Metadata June 2018

response_types_supported
REQUIRED. JSON array containing a list of the OAuth 2.0
"response_type" values that this authorization server supports.
The array values used are the same as those used with the
"response_types" parameter defined by "OAuth 2.0 Dynamic Client
Registration Protocol" [RFC7591].

response_modes_supported
OPTIONAL. JSON array containing a list of the OAuth 2.0
"response_mode" values that this authorization server supports, as
specified in "OAuth 2.0 Multiple Response Type Encoding Practices"
[OAuth.Responses]. If omitted, the default is "["query",
"fragment"]". The response mode value "form_post" is also defined
in "OAuth 2.0 Form Post Response Mode" [OAuth.Post].

grant_types_supported
OPTIONAL. JSON array containing a list of the OAuth 2.0 grant
type values that this authorization server supports. The array
values used are the same as those used with the "grant_types"
parameter defined by "OAuth 2.0 Dynamic Client Registration
Protocol" [RFC7591]. If omitted, the default value is
"["authorization_code", "implicit"]".

token_endpoint_auth_methods_supported
OPTIONAL. JSON array containing a list of client authentication
methods supported by this token endpoint. Client authentication
method values are used in the "token_endpoint_auth_method"
parameter defined in Section 2 of [RFC7591]. If omitted, the
default is "client_secret_basic" -- the HTTP Basic Authentication
Scheme specified in Section 2.3.1 of OAuth 2.0 [RFC6749].

token_endpoint_auth_signing_alg_values_supported
OPTIONAL. JSON array containing a list of the JWS signing
algorithms ("alg" values) supported by the token endpoint for the
signature on the JWT [JWT] used to authenticate the client at the
token endpoint for the "private_key_jwt" and "client_secret_jwt"
authentication methods. This metadata entry MUST be present if
either of these authentication methods are specified in the
"token_endpoint_auth_methods_supported" entry. No default
algorithms are implied if this entry is omitted. Servers SHOULD
support "RS256". The value "none" MUST NOT be used.

service_documentation
OPTIONAL. URL of a page containing human-readable information
that developers might want or need to know when using the
authorization server. In particular, if the authorization server

Jones, et al. Standards Track [Page 5]

RFC 8414: OAuth 2.0 Authorization Server Metadata 385

RFC 8414 OAuth 2.0 Authorization Server Metadata June 2018

does not support Dynamic Client Registration, then information on
how to register clients needs to be provided in this
documentation.

ui_locales_supported
OPTIONAL. Languages and scripts supported for the user interface,
represented as a JSON array of language tag values from BCP 47
[RFC5646]. If omitted, the set of supported languages and scripts
is unspecified.

op_policy_uri
OPTIONAL. URL that the authorization server provides to the
person registering the client to read about the authorization
server's requirements on how the client can use the data provided
by the authorization server. The registration process SHOULD
display this URL to the person registering the client if it is
given. As described in Section 5, despite the identifier
"op_policy_uri" appearing to be OpenID-specific, its usage in this
specification is actually referring to a general OAuth 2.0 feature
that is not specific to OpenID Connect.

op_tos_uri
OPTIONAL. URL that the authorization server provides to the
person registering the client to read about the authorization
server's terms of service. The registration process SHOULD
display this URL to the person registering the client if it is
given. As described in Section 5, despite the identifier
"op_tos_uri", appearing to be OpenID-specific, its usage in this
specification is actually referring to a general OAuth 2.0 feature
that is not specific to OpenID Connect.

revocation_endpoint
OPTIONAL. URL of the authorization server's OAuth 2.0 revocation
endpoint [RFC7009].

revocation_endpoint_auth_methods_supported
OPTIONAL. JSON array containing a list of client authentication
methods supported by this revocation endpoint. The valid client
authentication method values are those registered in the IANA
"OAuth Token Endpoint Authentication Methods" registry
[IANA.OAuth.Parameters]. If omitted, the default is
"client_secret_basic" -- the HTTP Basic Authentication Scheme
specified in Section 2.3.1 of OAuth 2.0 [RFC6749].

revocation_endpoint_auth_signing_alg_values_supported
OPTIONAL. JSON array containing a list of the JWS signing
algorithms ("alg" values) supported by the revocation endpoint for
the signature on the JWT [JWT] used to authenticate the client at

Jones, et al. Standards Track [Page 6]

386 RFC 8414: OAuth 2.0 Authorization Server Metadata

RFC 8414 OAuth 2.0 Authorization Server Metadata June 2018

the revocation endpoint for the "private_key_jwt" and
"client_secret_jwt" authentication methods. This metadata entry
MUST be present if either of these authentication methods are
specified in the "revocation_endpoint_auth_methods_supported"
entry. No default algorithms are implied if this entry is
omitted. The value "none" MUST NOT be used.

introspection_endpoint
OPTIONAL. URL of the authorization server's OAuth 2.0
introspection endpoint [RFC7662].

introspection_endpoint_auth_methods_supported
OPTIONAL. JSON array containing a list of client authentication
methods supported by this introspection endpoint. The valid
client authentication method values are those registered in the
IANA "OAuth Token Endpoint Authentication Methods" registry
[IANA.OAuth.Parameters] or those registered in the IANA "OAuth
Access Token Types" registry [IANA.OAuth.Parameters]. (These
values are and will remain distinct, due to Section 7.2.) If
omitted, the set of supported authentication methods MUST be
determined by other means.

introspection_endpoint_auth_signing_alg_values_supported
OPTIONAL. JSON array containing a list of the JWS signing
algorithms ("alg" values) supported by the introspection endpoint
for the signature on the JWT [JWT] used to authenticate the client
at the introspection endpoint for the "private_key_jwt" and
"client_secret_jwt" authentication methods. This metadata entry
MUST be present if either of these authentication methods are
specified in the "introspection_endpoint_auth_methods_supported"
entry. No default algorithms are implied if this entry is
omitted. The value "none" MUST NOT be used.

code_challenge_methods_supported
OPTIONAL. JSON array containing a list of Proof Key for Code
Exchange (PKCE) [RFC7636] code challenge methods supported by this
authorization server. Code challenge method values are used in
the "code_challenge_method" parameter defined in Section 4.3 of
[RFC7636]. The valid code challenge method values are those
registered in the IANA "PKCE Code Challenge Methods" registry
[IANA.OAuth.Parameters]. If omitted, the authorization server
does not support PKCE.

Additional authorization server metadata parameters MAY also be used.
Some are defined by other specifications, such as OpenID Connect
Discovery 1.0 [OpenID.Discovery].

Jones, et al. Standards Track [Page 7]

RFC 8414: OAuth 2.0 Authorization Server Metadata 387

RFC 8414 OAuth 2.0 Authorization Server Metadata June 2018

2.1. Signed Authorization Server Metadata

In addition to JSON elements, metadata values MAY also be provided as
a "signed_metadata" value, which is a JSON Web Token (JWT) [JWT] that
asserts metadata values about the authorization server as a bundle.
A set of claims that can be used in signed metadata is defined in
Section 2. The signed metadata MUST be digitally signed or MACed
using JSON Web Signature (JWS) [JWS] and MUST contain an "iss"
(issuer) claim denoting the party attesting to the claims in the
signed metadata. Consumers of the metadata MAY ignore the signed
metadata if they do not support this feature. If the consumer of the
metadata supports signed metadata, metadata values conveyed in the
signed metadata MUST take precedence over the corresponding values
conveyed using plain JSON elements.

Signed metadata is included in the authorization server metadata JSON
object using this OPTIONAL member:

signed_metadata
A JWT containing metadata values about the authorization server as
claims. This is a string value consisting of the entire signed
JWT. A "signed_metadata" metadata value SHOULD NOT appear as a
claim in the JWT.

3. Obtaining Authorization Server Metadata

Authorization servers supporting metadata MUST make a JSON document
containing metadata as specified in Section 2 available at a path
formed by inserting a well-known URI string into the authorization
server's issuer identifier between the host component and the path
component, if any. By default, the well-known URI string used is
"/.well-known/oauth-authorization-server". This path MUST use the
"https" scheme. The syntax and semantics of ".well-known" are
defined in RFC 5785 [RFC5785]. The well-known URI suffix used MUST
be registered in the IANA "Well-Known URIs" registry
[IANA.well-known].

Different applications utilizing OAuth authorization servers in
application-specific ways may define and register different well-
known URI suffixes used to publish authorization server metadata as
used by those applications. For instance, if the example application
uses an OAuth authorization server in an example-specific way, and
there are example-specific metadata values that it needs to publish,
then it might register and use the "example-configuration" URI suffix
and publish the metadata document at the path formed by inserting
"/.well-known/example-configuration" between the host and path
components of the authorization server's issuer identifier.
Alternatively, many such applications will use the default well-known

Jones, et al. Standards Track [Page 8]

388 RFC 8414: OAuth 2.0 Authorization Server Metadata

RFC 8414 OAuth 2.0 Authorization Server Metadata June 2018

URI string "/.well-known/oauth-authorization-server", which is the
right choice for general-purpose OAuth authorization servers, and not
register an application-specific one.

An OAuth 2.0 application using this specification MUST specify what
well-known URI suffix it will use for this purpose. The same
authorization server MAY choose to publish its metadata at multiple
well-known locations derived from its issuer identifier, for example,
publishing metadata at both "/.well-known/example-configuration" and
"/.well-known/oauth-authorization-server".

Some OAuth applications will choose to use the well-known URI suffix
"openid-configuration". As described in Section 5, despite the
identifier "/.well-known/openid-configuration", appearing to be
OpenID specific, its usage in this specification is actually
referring to a general OAuth 2.0 feature that is not specific to
OpenID Connect.

3.1. Authorization Server Metadata Request

An authorization server metadata document MUST be queried using an
HTTP "GET" request at the previously specified path.

The client would make the following request when the issuer
identifier is "https://example.com" and the well-known URI suffix is
"oauth-authorization-server" to obtain the metadata, since the issuer
identifier contains no path component:

GET /.well-known/oauth-authorization-server HTTP/1.1
Host: example.com

If the issuer identifier value contains a path component, any
terminating "/" MUST be removed before inserting "/.well-known/" and
the well-known URI suffix between the host component and the path
component. The client would make the following request when the
issuer identifier is "https://example.com/issuer1" and the well-known
URI suffix is "oauth-authorization-server" to obtain the metadata,
since the issuer identifier contains a path component:

GET /.well-known/oauth-authorization-server/issuer1 HTTP/1.1
Host: example.com

Using path components enables supporting multiple issuers per host.
This is required in some multi-tenant hosting configurations. This
use of ".well-known" is for supporting multiple issuers per host;
unlike its use in RFC 5785 [RFC5785], it does not provide general
information about the host.

Jones, et al. Standards Track [Page 9]

RFC 8414: OAuth 2.0 Authorization Server Metadata 389

RFC 8414 OAuth 2.0 Authorization Server Metadata June 2018

3.2. Authorization Server Metadata Response

The response is a set of claims about the authorization server's
configuration, including all necessary endpoints and public key
location information. A successful response MUST use the 200 OK HTTP
status code and return a JSON object using the "application/json"
content type that contains a set of claims as its members that are a
subset of the metadata values defined in Section 2. Other claims MAY
also be returned.

Claims that return multiple values are represented as JSON arrays.
Claims with zero elements MUST be omitted from the response.

An error response uses the applicable HTTP status code value.

The following is a non-normative example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"issuer":
"https://server.example.com",

"authorization_endpoint":
"https://server.example.com/authorize",

"token_endpoint":
"https://server.example.com/token",

"token_endpoint_auth_methods_supported":
["client_secret_basic", "private_key_jwt"],

"token_endpoint_auth_signing_alg_values_supported":
["RS256", "ES256"],

"userinfo_endpoint":
"https://server.example.com/userinfo",

"jwks_uri":
"https://server.example.com/jwks.json",

"registration_endpoint":
"https://server.example.com/register",

"scopes_supported":
["openid", "profile", "email", "address",
"phone", "offline_access"],

"response_types_supported":
["code", "code token"],

"service_documentation":
"http://server.example.com/service_documentation.html",

"ui_locales_supported":
["en-US", "en-GB", "en-CA", "fr-FR", "fr-CA"]

}

Jones, et al. Standards Track [Page 10]

390 RFC 8414: OAuth 2.0 Authorization Server Metadata

RFC 8414 OAuth 2.0 Authorization Server Metadata June 2018

3.3. Authorization Server Metadata Validation

The "issuer" value returned MUST be identical to the authorization
server's issuer identifier value into which the well-known URI string
was inserted to create the URL used to retrieve the metadata. If
these values are not identical, the data contained in the response
MUST NOT be used.

4. String Operations

Processing some OAuth 2.0 messages requires comparing values in the
messages to known values. For example, the member names in the
metadata response might be compared to specific member names such as
"issuer". Comparing Unicode [UNICODE] strings, however, has
significant security implications.

Therefore, comparisons between JSON strings and other Unicode strings
MUST be performed as specified below:

1. Remove any JSON-applied escaping to produce an array of Unicode
code points.

2. Unicode Normalization [USA15] MUST NOT be applied at any point to
either the JSON string or the string it is to be compared
against.

3. Comparisons between the two strings MUST be performed as a
Unicode code-point-to-code-point equality comparison.

Note that this is the same equality comparison procedure described in
Section 8.3 of [RFC8259].

5. Compatibility Notes

The identifiers "/.well-known/openid-configuration", "op_policy_uri",
and "op_tos_uri" contain strings referring to the OpenID Connect
[OpenID.Core] family of specifications that were originally defined
by "OpenID Connect Discovery 1.0" [OpenID.Discovery]. Despite the
reuse of these identifiers that appear to be OpenID specific, their
usage in this specification is actually referring to general OAuth
2.0 features that are not specific to OpenID Connect.

The algorithm for transforming the issuer identifier to an
authorization server metadata location defined in Section 3 is
equivalent to the corresponding transformation defined in Section 4
of "OpenID Connect Discovery 1.0" [OpenID.Discovery], provided that
the issuer identifier contains no path component. However, they are
different when there is a path component, because OpenID Connect

Jones, et al. Standards Track [Page 11]

RFC 8414: OAuth 2.0 Authorization Server Metadata 391

RFC 8414 OAuth 2.0 Authorization Server Metadata June 2018

Discovery 1.0 specifies that the well-known URI string is appended to
the issuer identifier (e.g.,
"https://example.com/issuer1/.well-known/openid-configuration"),
whereas this specification specifies that the well-known URI string
is inserted before the path component of the issuer identifier (e.g.,
"https://example.com/.well-known/openid-configuration/issuer1").

Going forward, OAuth authorization server metadata locations should
use the transformation defined in this specification. However, when
deployed in legacy environments in which the OpenID Connect Discovery
1.0 transformation is already used, it may be necessary during a
transition period to publish metadata for issuer identifiers
containing a path component at both locations. During this
transition period, applications should first apply the transformation
defined in this specification and attempt to retrieve the
authorization server metadata from the resulting location; only if
the retrieval from that location fails should they fall back to
attempting to retrieve it from the alternate location obtained using
the transformation defined by OpenID Connect Discovery 1.0. This
backwards-compatible behavior should only be necessary when the well-
known URI suffix employed by the application is "openid-
configuration".

6. Security Considerations

6.1. TLS Requirements

Implementations MUST support TLS. Which version(s) ought to be
implemented will vary over time and depend on the widespread
deployment and known security vulnerabilities at the time of
implementation. The authorization server MUST support TLS version
1.2 [RFC5246] and MAY support additional TLS mechanisms meeting its
security requirements. When using TLS, the client MUST perform a
TLS/SSL server certificate check, per RFC 6125 [RFC6125].
Implementation security considerations can be found in
"Recommendations for Secure Use of Transport Layer Security (TLS) and
Datagram Transport Layer Security (DTLS)" [BCP195].

To protect against information disclosure and tampering,
confidentiality protection MUST be applied using TLS with a
ciphersuite that provides confidentiality and integrity protection.

6.2. Impersonation Attacks

TLS certificate checking MUST be performed by the client, as
described in Section 6.1, when making an authorization server
metadata request. Checking that the server certificate is valid for
the issuer identifier URL prevents man-in-middle and DNS-based

Jones, et al. Standards Track [Page 12]

392 RFC 8414: OAuth 2.0 Authorization Server Metadata

RFC 8414 OAuth 2.0 Authorization Server Metadata June 2018

attacks. These attacks could cause a client to be tricked into using
an attacker's keys and endpoints, which would enable impersonation of
the legitimate authorization server. If an attacker can accomplish
this, they can access the resources that the affected client has
access to using the authorization server that they are impersonating.

An attacker may also attempt to impersonate an authorization server
by publishing a metadata document that contains an "issuer" claim
using the issuer identifier URL of the authorization server being
impersonated, but with its own endpoints and signing keys. This
would enable it to impersonate that authorization server, if accepted
by the client. To prevent this, the client MUST ensure that the
issuer identifier URL it is using as the prefix for the metadata
request exactly matches the value of the "issuer" metadata value in
the authorization server metadata document received by the client.

6.3. Publishing Metadata in a Standard Format

Publishing information about the authorization server in a standard
format makes it easier for both legitimate clients and attackers to
use the authorization server. Whether an authorization server
publishes its metadata in an ad hoc manner or in the standard format
defined by this specification, the same defenses against attacks that
might be mounted that use this information should be applied.

6.4. Protected Resources

Secure determination of appropriate protected resources to use with
an authorization server for all use cases is out of scope of this
specification. This specification assumes that the client has a
means of determining appropriate protected resources to use with an
authorization server and that the client is using the correct
metadata for each authorization server. Implementers need to be
aware that if an inappropriate protected resource is used by the
client, that an attacker may be able to act as a man-in-the-middle
proxy to a valid protected resource without it being detected by the
authorization server or the client.

The ways to determine the appropriate protected resources to use with
an authorization server are, in general, application dependent. For
instance, some authorization servers are used with a fixed protected
resource or set of protected resources, the locations of which may be
well known or could be published as metadata values by the
authorization server. In other cases, the set of resources that can
be used with an authorization server can be dynamically changed by
administrative actions. Many other means of determining appropriate
associations between authorization servers and protected resources
are also possible.

Jones, et al. Standards Track [Page 13]

RFC 8414: OAuth 2.0 Authorization Server Metadata 393

RFC 8414 OAuth 2.0 Authorization Server Metadata June 2018

7. IANA Considerations

The following registration procedure is used for the registry
established by this specification.

Values are registered on a Specification Required [RFC8126] basis
after a two-week review period on the oauth-ext-review@ietf.org
mailing list, on the advice of one or more Designated Experts.
However, to allow for the allocation of values prior to publication,
the Designated Experts may approve registration once they are
satisfied that such a specification will be published.

Registration requests sent to the mailing list for review should use
an appropriate subject (e.g., "Request to register OAuth
Authorization Server Metadata: example").

Within the review period, the Designated Experts will either approve
or deny the registration request, communicating this decision to the
review list and IANA. Denials should include an explanation and, if
applicable, suggestions as to how to make the request successful.
Registration requests that are undetermined for a period longer than
21 days can be brought to the IESG's attention (using the
iesg@ietf.org mailing list) for resolution.

Criteria that should be applied by the Designated Experts include
determining whether the proposed registration duplicates existing
functionality, determining whether it is likely to be of general
applicability or whether it is useful only for a single application,
and whether the registration makes sense.

IANA must only accept registry updates from the Designated Experts
and should direct all requests for registration to the review mailing
list.

It is suggested that multiple Designated Experts be appointed who are
able to represent the perspectives of different applications using
this specification, in order to enable broadly-informed review of
registration decisions. In cases where a registration decision could
be perceived as creating a conflict of interest for a particular
Designated Expert, that Designated Expert should defer to the
judgment of the other Designated Experts.

7.1. OAuth Authorization Server Metadata Registry

This specification establishes the IANA "OAuth Authorization Server
Metadata" registry for OAuth 2.0 authorization server metadata names.
The registry records the authorization server metadata member and a
reference to the specification that defines it.

Jones, et al. Standards Track [Page 14]

394 RFC 8414: OAuth 2.0 Authorization Server Metadata

RFC 8414 OAuth 2.0 Authorization Server Metadata June 2018

The Designated Experts must either:

(a) require that metadata names and values being registered use only
printable ASCII characters excluding double quote ('"') and backslash
('\') (the Unicode characters with code points U+0021, U+0023 through
U+005B, and U+005D through U+007E), or

(b) if new metadata members or values are defined that use other code
points, require that their definitions specify the exact sequences of
Unicode code points used to represent them. Furthermore, proposed
registrations that use Unicode code points that can only be
represented in JSON strings as escaped characters must not be
accepted.

7.1.1. Registration Template

Metadata Name:
The name requested (e.g., "issuer"). This name is case-sensitive.
Names may not match other registered names in a case-insensitive
manner (one that would cause a match if the Unicode toLowerCase()
operation were applied to both strings) unless the Designated
Experts state that there is a compelling reason to allow an
exception.

Metadata Description:
Brief description of the metadata (e.g., "Issuer identifier URL").

Change Controller:
For Standards Track RFCs, list the "IESG". For others, give the
name of the responsible party. Other details (e.g., postal
address, email address, home page URI) may also be included.

Specification Document(s):
Reference to the document or documents that specify the parameter,
preferably including URIs that can be used to retrieve copies of
the documents. An indication of the relevant sections may also be
included but is not required.

Jones, et al. Standards Track [Page 15]

RFC 8414: OAuth 2.0 Authorization Server Metadata 395

RFC 8414 OAuth 2.0 Authorization Server Metadata June 2018

7.1.2. Initial Registry Contents

o Metadata Name: issuer
o Metadata Description: Authorization server's issuer identifier URL
o Change Controller: IESG
o Specification Document(s): Section 2 of RFC 8414

o Metadata Name: authorization_endpoint
o Metadata Description: URL of the authorization server's

authorization endpoint
o Change Controller: IESG
o Specification Document(s): Section 2 of RFC 8414

o Metadata Name: token_endpoint
o Metadata Description: URL of the authorization server's token

endpoint
o Change Controller: IESG
o Specification Document(s): Section 2 of RFC 8414

o Metadata Name: jwks_uri
o Metadata Description: URL of the authorization server's JWK Set

document
o Change Controller: IESG
o Specification Document(s): Section 2 of RFC 8414

o Metadata Name: registration_endpoint
o Metadata Description: URL of the authorization server's OAuth 2.0

Dynamic Client Registration Endpoint
o Change Controller: IESG
o Specification Document(s): Section 2 of RFC 8414

o Metadata Name: scopes_supported
o Metadata Description: JSON array containing a list of the OAuth

2.0 "scope" values that this authorization server supports
o Change Controller: IESG
o Specification Document(s): Section 2 of RFC 8414

o Metadata Name: response_types_supported
o Metadata Description: JSON array containing a list of the OAuth

2.0 "response_type" values that this authorization server supports
o Change Controller: IESG
o Specification Document(s): Section 2 of RFC 8414

o Metadata Name: response_modes_supported
o Metadata Description: JSON array containing a list of the OAuth

2.0 "response_mode" values that this authorization server supports
o Change Controller: IESG
o Specification Document(s): Section 2 of RFC 8414

Jones, et al. Standards Track [Page 16]

396 RFC 8414: OAuth 2.0 Authorization Server Metadata

RFC 8414 OAuth 2.0 Authorization Server Metadata June 2018

o Metadata Name: grant_types_supported
o Metadata Description: JSON array containing a list of the OAuth

2.0 grant type values that this authorization server supports
o Change Controller: IESG
o Specification Document(s): Section 2 of RFC 8414

o Metadata Name: token_endpoint_auth_methods_supported
o Metadata Description: JSON array containing a list of client

authentication methods supported by this token endpoint
o Change Controller: IESG
o Specification Document(s): Section 2 of RFC 8414

o Metadata Name: token_endpoint_auth_signing_alg_values_supported
o Metadata Description: JSON array containing a list of the JWS

signing algorithms supported by the token endpoint for the
signature on the JWT used to authenticate the client at the token
endpoint

o Change Controller: IESG
o Specification Document(s): Section 2 of RFC 8414

o Metadata Name: service_documentation
o Metadata Description: URL of a page containing human-readable

information that developers might want or need to know when using
the authorization server

o Change Controller: IESG
o Specification Document(s): Section 2 of RFC 8414

o Metadata Name: ui_locales_supported
o Metadata Description: Languages and scripts supported for the user

interface, represented as a JSON array of language tag values from
BCP 47

o Change Controller: IESG
o Specification Document(s): Section 2 of RFC 8414

o Metadata Name: op_policy_uri
o Metadata Description: URL that the authorization server provides

to the person registering the client to read about the
authorization server's requirements on how the client can use the
data provided by the authorization server

o Change Controller: IESG
o Specification Document(s): Section 2 of RFC 8414

o Metadata Name: op_tos_uri
o Metadata Description: URL that the authorization server provides

to the person registering the client to read about the
authorization server's terms of service

o Change Controller: IESG
o Specification Document(s): Section 2 of RFC 8414

Jones, et al. Standards Track [Page 17]

RFC 8414: OAuth 2.0 Authorization Server Metadata 397

RFC 8414 OAuth 2.0 Authorization Server Metadata June 2018

o Metadata Name: revocation_endpoint
o Metadata Description: URL of the authorization server's OAuth 2.0

revocation endpoint
o Change Controller: IESG
o Specification Document(s): Section 2 of RFC 8414

o Metadata Name: revocation_endpoint_auth_methods_supported
o Metadata Description: JSON array containing a list of client

authentication methods supported by this revocation endpoint
o Change Controller: IESG
o Specification Document(s): Section 2 of RFC 8414

o Metadata Name:
revocation_endpoint_auth_signing_alg_values_supported

o Metadata Description: JSON array containing a list of the JWS
signing algorithms supported by the revocation endpoint for the
signature on the JWT used to authenticate the client at the
revocation endpoint

o Change Controller: IESG
o Specification Document(s): Section 2 of RFC 8414

o Metadata Name: introspection_endpoint
o Metadata Description: URL of the authorization server's OAuth 2.0

introspection endpoint
o Change Controller: IESG
o Specification Document(s): Section 2 of RFC 8414

o Metadata Name: introspection_endpoint_auth_methods_supported
o Metadata Description: JSON array containing a list of client

authentication methods supported by this introspection endpoint
o Change Controller: IESG
o Specification Document(s): Section 2 of RFC 8414

o Metadata Name:
introspection_endpoint_auth_signing_alg_values_supported

o Metadata Description: JSON array containing a list of the JWS
signing algorithms supported by the introspection endpoint for the
signature on the JWT used to authenticate the client at the
introspection endpoint

o Change Controller: IESG
o Specification Document(s): Section 2 of RFC 8414

o Metadata Name: code_challenge_methods_supported
o Metadata Description: PKCE code challenge methods supported by

this authorization server
o Change Controller: IESG
o Specification Document(s): Section 2 of RFC 8414

Jones, et al. Standards Track [Page 18]

398 RFC 8414: OAuth 2.0 Authorization Server Metadata

RFC 8414 OAuth 2.0 Authorization Server Metadata June 2018

o Metadata Name: signed_metadata
o Metadata Description: Signed JWT containing metadata values about

the authorization server as claims
o Change Controller: IESG
o Specification Document(s): Section 2.1 of RFC 8414

7.2. Updated Registration Instructions

This specification adds to the instructions for the Designated
Experts of the following IANA registries, both of which are in the
"OAuth Parameters" registry [IANA.OAuth.Parameters]:

o OAuth Access Token Types
o OAuth Token Endpoint Authentication Methods

IANA has added a link to this specification in the Reference sections
of these registries.

For these registries, the Designated Experts must reject registration
requests in one registry for values already occurring in the other
registry. This is necessary because the
"introspection_endpoint_auth_methods_supported" parameter allows for
the use of values from either registry. That way, because the values
in the two registries will continue to be mutually exclusive, no
ambiguities will arise.

7.3. Well-Known URI Registry

This specification registers the well-known URI defined in Section 3
in the IANA "Well-Known URIs" registry [IANA.well-known] established
by RFC 5785 [RFC5785].

7.3.1. Registry Contents

o URI suffix: oauth-authorization-server
o Change controller: IESG
o Specification document: Section 3 of RFC 8414
o Related information: (none)

Jones, et al. Standards Track [Page 19]

RFC 8414: OAuth 2.0 Authorization Server Metadata 399

RFC 8414 OAuth 2.0 Authorization Server Metadata June 2018

8. References

8.1. Normative References

[BCP195] Sheffer, Y., Holz, R., and P. Saint-Andre,
"Recommendations for Secure Use of Transport Layer
Security (TLS) and Datagram Transport Layer Security
(DTLS)", BCP 195, RFC 7525, May 2015,
.

[IANA.OAuth.Parameters]
IANA, "OAuth Parameters",
.

[JWE] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
RFC 7516, DOI 10.17487/RFC7516, May 2015,
.

[JWK] Jones, M., "JSON Web Key (JWK)", RFC 7517,
DOI 10.17487/RFC7517, May 2015,
.

[JWS] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
2015, .

[JWT] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
(JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
.

[OAuth.Post]
Jones, M. and B. Campbell, "OAuth 2.0 Form Post Response
Mode", April 2015, .

[OAuth.Responses]
de Medeiros, B., Ed., Scurtescu, M., Tarjan, P., and M.
Jones, "OAuth 2.0 Multiple Response Type Encoding
Practices", February 2014, .

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
.

Jones, et al. Standards Track [Page 20]

400 RFC 8414: OAuth 2.0 Authorization Server Metadata

RFC 8414 OAuth 2.0 Authorization Server Metadata June 2018

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246,
DOI 10.17487/RFC5246, August 2008,
.

[RFC5646] Phillips, A., Ed. and M. Davis, Ed., "Tags for Identifying
Languages", BCP 47, RFC 5646, DOI 10.17487/RFC5646,
September 2009, .

[RFC5785] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
Uniform Resource Identifiers (URIs)", RFC 5785,
DOI 10.17487/RFC5785, April 2010,
.

[RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
Verification of Domain-Based Application Service Identity
within Internet Public Key Infrastructure Using X.509
(PKIX) Certificates in the Context of Transport Layer
Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
2011, .

[RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,
.

[RFC7009] Lodderstedt, T., Ed., Dronia, S., and M. Scurtescu, "OAuth
2.0 Token Revocation", RFC 7009, DOI 10.17487/RFC7009,
August 2013, .

[RFC7033] Jones, P., Salgueiro, G., Jones, M., and J. Smarr,
"WebFinger", RFC 7033, DOI 10.17487/RFC7033, September
2013, .

[RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",
RFC 7591, DOI 10.17487/RFC7591, July 2015,
.

[RFC7636] Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof Key
for Code Exchange by OAuth Public Clients", RFC 7636,
DOI 10.17487/RFC7636, September 2015,
.

[RFC7662] Richer, J., Ed., "OAuth 2.0 Token Introspection",
RFC 7662, DOI 10.17487/RFC7662, October 2015,
.

Jones, et al. Standards Track [Page 21]

RFC 8414: OAuth 2.0 Authorization Server Metadata 401

RFC 8414 OAuth 2.0 Authorization Server Metadata June 2018

[RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
Writing an IANA Considerations Section in RFCs", BCP 26,
RFC 8126, DOI 10.17487/RFC8126, June 2017,
.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, .

[RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
Interchange Format", STD 90, RFC 8259,
DOI 10.17487/RFC8259, December 2017,
.

[UNICODE] The Unicode Consortium, "The Unicode Standard",
.

[USA15] Davis, M., Ed. and K. Whistler, Ed., "Unicode
Normalization Forms", Unicode Standard Annex #15, May
2018, .

8.2. Informative References

[IANA.well-known]
IANA, "Well-Known URIs",
.

[MIX-UP] Jones, M., Bradley, J., and N. Sakimura, "OAuth 2.0 Mix-Up
Mitigation", Work in Progress, draft-ietf-oauth-mix-up-
mitigation-01, July 2016.

[OpenID.Core]
Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and
C. Mortimore, "OpenID Connect Core 1.0", November 2014,
.

[OpenID.Discovery]
Sakimura, N., Bradley, J., Jones, M., and E. Jay, "OpenID
Connect Discovery 1.0", November 2014,
.

[OpenID.Registration]
Sakimura, N., Bradley, J., and M. Jones, "OpenID Connect
Dynamic Client Registration 1.0", November 2014,
.

Jones, et al. Standards Track [Page 22]

402 RFC 8414: OAuth 2.0 Authorization Server Metadata

RFC 8414 OAuth 2.0 Authorization Server Metadata June 2018

Acknowledgements

This specification is based on the OpenID Connect Discovery 1.0
specification, which was produced by the OpenID Connect working group
of the OpenID Foundation. This specification standardizes the de
facto usage of the metadata format defined by OpenID Connect
Discovery to publish OAuth authorization server metadata.

The authors would like to thank the following people for their
reviews of this specification: Shwetha Bhandari, Ben Campbell, Brian
Campbell, Brian Carpenter, William Denniss, Vladimir Dzhuvinov,
Donald Eastlake, Samuel Erdtman, George Fletcher, Dick Hardt, Phil
Hunt, Alexey Melnikov, Tony Nadalin, Mark Nottingham, Eric Rescorla,
Justin Richer, Adam Roach, Hannes Tschofenig, and Hans Zandbelt.

Authors' Addresses

Michael B. Jones
Microsoft

Email: mbj@microsoft.com
URI: http://self-issued.info/

Nat Sakimura
Nomura Research Institute, Ltd.

Email: n-sakimura@nri.co.jp
URI: http://nat.sakimura.org/

John Bradley
Yubico

Email: RFC8414@ve7jtb.com
URI: http://www.thread-safe.com/

Jones, et al. Standards Track [Page 23]

RFC 8414: OAuth 2.0 Authorization Server Metadata 403

404 RFC 8414: OAuth 2.0 Authorization Server Metadata

° ° ° ° °

Advanced Extensions

If you've made it this far, congrats! OAuth is a big space,
and there's a lot more to cover than what we fit into this
book! So far we've covered the most common and widely
deployed specs in the space. But OAuth is never finished!
There's a lot of exciting new developments happening in
the working group still.

RFC 9126: Pushed Authorization Requests

https://datatracker.ietf.org/doc/html/rfc9126

Pushed Authorization Requests is a significant change to
the OAuth flow to rely less on the front channel, by
moving the start of the authorization code flow to the back
channel instead.

RFC 9101: JWT Authorization Request

https://datatracker.ietf.org/doc/html/rfc9101

JWT Authorization Request describes a way to encode and
sign the authorization request parameters as a JWT
instead of using plain query string components. This lets
the authorization server be sure that a real OAuth
application initiated a particular authorziation request
and the request has not been forged or tampered with.

Appendix: Advanced Extensions 405

https://datatracker.ietf.org/doc/html/rfc9126
https://datatracker.ietf.org/doc/html/rfc9101

RFC 9068: JWT Profile for OAuth Access Tokens

https://datatracker.ietf.org/doc/html/rfc9068

The JWT Profile for OAuth Access Tokens defines a JWT-
based format and vocabulary for access tokens based on
the collective experience learned from several large
deployments.

RFC 8705: Mutual TLS

https://datatracker.ietf.org/doc/html/rfc8705

Mutual TLS describes a way to use TLS certificates for
client authentication as well as issuing certificate-bound
access tokens. This is one way implementers are
improving upon the idea of bearer tokens.

Draft: DPoP

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dpop

DPoP describes an alternative to Mutual TLS for issuing
access tokens that are bound to a particular client. This
version accomplishes that in the application layer rather
than transport layer.

Draft: Rich Authorization Requests

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-rar

Rich Authorization Requests describes way for apps to
request permissions more fine-grained than the current
OAuth "scope" mechanism can provide. This could be
used, for example, to authorize a particular bank transfer.

406 Appendix: Advanced Extensions

https://datatracker.ietf.org/doc/html/rfc9068
https://datatracker.ietf.org/doc/html/rfc8705
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dpop
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-rar

° ° ° ° °

Related Communities

While the core OAuth specs are developed within the IETF
OAuth Working Group, many other communities have
built extensions on top of OAuth as well. Some of the new
work within the OAuth group has started in these outside
communities and was brought into the group after some
time.

OpenID Foundation

https://openid.net

OpenID Connect builds upon the OAuth framework to
provide user identity to clients. OpenID Connect adds a
new type of token, an ID Token, which communicates user
data to the application. It also defines some additional
endpoints for things like session management.

Financial-Grade API Working Group (FAPI)

https://openid.net/wg/fapi/

The Financial-Grade API WG develops extensions that
harden OAuth to meet the security requirements of the
financial industry. Some of their current specs are being
brought into the OAuth Working Group.

Appendix: Related Communities 407

https://openid.net/
https://openid.net/wg/fapi/

Kantara Initiative

https://kantarainitiative.org

The Kantara Initiative publishes the User-Managed Access
(UMA) extension, describing an OAuth flow that enables a
user to grant access to other users rather than only other
applications.

IndieWeb

https://indieweb.org

The IndieWeb community publishes IndieAuth
(indieauth.net), a decentralized identity protocol built on
OAuth that uses URLs to identify users and applications. It
enables people to use a domain under their control as
their online identity while signing in to applications
online.

Transactional Authorization

https://oauth.xyz

Transactional Authorization is a new proposal for a spec
that could eventually replace OAuth 2.0. The project is in
very early stages, but discussions have been happening at
and around the OAuth group meetings by many of the
same members of the OAuth group.

408 Appendix: Related Communities

https://kantarainitiative.org/
https://indieweb.org/
https://indieauth.net/
https://oauth.xyz/

° ° ° ° °

Acknowledgments

Thanks to everyone who has participated in the development
of the many OAuth specs over the years!

Below are the names of everyone who is acknowledged in all
the RFCs in this collection.

Aaron Parecki, Adam Roach, Aiden Bell, Alastair Mair,
Alexey Melnikov, Alissa Cooper, Allen Tom, Amanda Anganes,
Amos Jeffries, Andre DeMarre, Andrew Arnott,
Andrew Sciberras, Andy Smith, Andy Zmolek,
Annabelle Backman, Annabelle Richard Backman,
Anthony Nadalin, Ashish Jain, Axel Nenker, Axel Nennker,
Barry Leiba, Ben Campbell, Ben Laurie, Ben Wiley Sittler,
Benjamin Kaduk, Bill Fisher, Bill de hOra, Bill de hÓra,
Blaine Cook, Breno de Medeiros, Brent Goldman,
Brian Campbell, Brian Carpenter, Brian Eaton, Brian Ellin,
Brian Slesinsky, Brock Allen, Casey Lucas, Chasen Le Hara,
Chris Messina, Christian Mainka, Christian Stuebner,
Christopher Thomas, Christopher Wood, Chuck Mortimore,
Craig Heath, Dan McNulty, Daniel Fett, Darren Bounds,
David Recordon, David Waite, Derek Atkins, Dick Hardt,
Dirk Balfanz, Dominick Baier, Donald Eastlake, Doug Foiles,
Doug McDorman, Doug Tangren, Eduardo Gueiros,
Elwyn Davies, Emond Papegaaij, Eran Hammer, Eran Sandler,
Eric Fazendin, Eric Rescorla, Eric Sachs, Erik Wahlstrom,
Evan Gilbert, Eve Maler, Filip Skokan, Francisco Corella,
Franklin Tse, George Fletcher, George Fletscher,
Guido Schmitz, Haibin Song, Hannes Tschofenig,
Hans Zandbelt, Henry S. Thompson, Hui-Lan Lu,

Appendix: Acknowledgments 409

Iain McGinniss, Ignacio Fiorentino, Igor Faynberg,
James Manger, Jamshid Khosravian, Janak Amarasena,
Jared Jennings, Jeremy Suriel, Jim Manico, Johan Peeters,
John Bradley, John Kemp, John Panzer, Jonathan Sergent,
Joseph Heenan, Josh Mandel, Julian Reschke, Justin Hart,
Justin Richer, Justin Smith, Karl McGuinness,
Karsten Meyer zu Selhausen, Kathleen Moriarty,
Kellan Elliott-McCrea, Ken Wang, Konstantin Lapine,
Kristoffer Gronowski, Larry Halff, Laurence Miao,
Leah Culver, Leo Tohill, Lewis Adam, Lisa Dusseault,
Luca Frosini, Lukas Rosenstock, Luke Shepard,
Madjid Nakhjiri, Marcos Caceres, Marius Scurtescu,
Mark Atwood, Mark Kent, Mark McGloin, Mark Nottingham,
Mark Wubben, Michael Adams, Michael B. Jones,
Michael Peck, Michiel de Jong, Mike Jones, Mike Schwartz,
Mirja Kuehlewind, Naitik Shah, Nat Sakimura, Neil Madden,
Nick Walker, Niv Steingarten, Nov Matake, Paul Freemantle,
Paul Madsen, Paul Tarjan, Paul Walker, Pedram Hosseyni,
Peifung E. Lam, Peter Mauritius, Peter Saint-Andre,
Petteri Stenius, Phil Hunt, Philippe De Ryck,
Prabath Siriwardena, Prateek Mishra, Qin Wu,
Raffi Krikorian, Rahul Ravikumar, Rasmus Lerdorf,
Richard M. Conlan, Rob Richards, Rob Sayre, Robert Sparks,
Roger Crew, Roshni Chandrashekhar, Ryo Ito, Sam Quigley,
Samuel Erdtman, Sarah Squire, Scott Cantor, Scott Tomilson,
Sean Turner, Sebastian Ebling, Sergey Beryozkin,
Shane Weeden, Shwetha Bhandari, Simon Moffatt,
Skylar Woodward, Stein Myrseth, Stephen Farrell,
Steve Moore, Steven E. Wright, Sudhi Umarji, Takamichi Saito,
Terry Jones, Thomas Broyer, Thomas Hardjono, Tim Bray,
Tim Freeman, Tim Wuertele, Todd Sieling, Tomek Stojecki,
Tony Nadalin, Torsten Lodderstedt, Travis Spencer,
Vittorio Bertocci, Vlad Skvortsov, Vladimir Dzhuvinov,
Wesley Eddy, William Dennis, William Denniss,
William J. Mills, Wolter Eldering, Yannick Majoros,
Yaron Y. Goland, Zachary Zeltsan.

410 Appendix: Acknowledgments

The Little Book
of OAuth 2.0 RFCs

Aaron Parecki
aaronpk.com
oauth2simplified.com

Aaron Parecki is a member of the OAuth Working
Group at the IETF and has contributed to a
number of the OAuth specifications. His books
and trainings help developers architect and
build secure systems using the latest standards.

This reference guide will help you understand the
context of each RFC that is part of OAuth.

The Little Book of OAuth 2.0 RFCs is a compilation
of IETF RFCs that make up the OAuth spec. It
contains a complete reproduction of each RFC listed
above, along with a short introduction setting the
context for why each RFC is important.

RFC 6749, RFC 6750, RFC 6819, RFC 7009,
RFC 7636, RFC 7662, RFC 8252, RFC 8414,
RFC 8628, Security BCP, Browser App BCP

5039567986079

ISBN 9798607503956
90000 >

	The Little Book ofOAuth 2.0 RFCs
	
	Aaron Parecki

	The Little Book of OAuth 2.0 RFCs

	Table of Contents
	Introduction
	RFC 6749: The OAuth 2.0 Authorization Framework
	RFC 6750: OAuth 2.0 Bearer Tokens
	RFC 7636: Proof Key for Code Exchange (PKCE)
	RFC 6819: OAuth 2.0 Threat Model and Security Considerations
	RFC 8252: OAuth 2.0 for Native and Mobile Apps
	Draft: OAuth 2.0 for Browser-Based Apps
	Draft: OAuth 2.0 Security Best Current Practice
	RFC 8628: OAuth 2.0 Device Authorization Grant
	RFC 7009: OAuth 2.0 Token Revocation
	RFC 7662: OAuth 2.0 Token Introspection
	RFC 8414: OAuth 2.0 Authorization Server Metadata
	Advanced Extensions
	RFC 9126: Pushed Authorization Requests
	RFC 9101: JWT Authorization Request
	RFC 9068: JWT Profile for OAuth Access Tokens
	RFC 8705: Mutual TLS
	Draft: DPoP
	Draft: Rich Authorization Requests

	Related Communities
	OpenID Foundation
	Financial-Grade API Working Group (FAPI)
	Kantara Initiative
	IndieWeb
	Transactional Authorization

	Acknowledgments

